The Proteins Interacting with Prmt5 in Medaka (Oryzias latipes) Identified by Yeast Two-Hybridization

2020 ◽  
Vol 27 (10) ◽  
pp. 971-978
Author(s):  
Hao Shen ◽  
Xiaosha Zhang ◽  
Md. Abdullah Al Hafiz ◽  
Xiaoting Liang ◽  
Qiting Yao ◽  
...  

Background: Prmt5 plays major role in regulation of gene expression, RNA processing, cell growth and differentiation, signal transduction, germ cell development, etc., in mammals. Prmt5 is also related to cancer. Knowing the proteins interacting with Prmt5 is important to understand Prmt5’s function in cells. Although there have been reports on proteins binding with Prmt5 in mammals, the partner proteins of Prmt5 in fish are still unclear. Objectives: The objective was to obtain proteins that bind with Prmt5 in medaka, a model fish. Methods: Yeast two hybridization was adopted to achieve the objective. Medaka Prmt5 was used as a bait to fish the prey, binding proteins in a cDNA library of medaka. Co-immunoprecipitation and in silicon analysis were performed to study the interaction of medaka Mep50 and Prmt5. Results: Eight proteins were identified to bind with Prmt5 from 69 preliminary positive colonies. The binding proteins are methylosome protein 50 (Mep50), apolipoprotein A-I-like (Apo-AI), PR domain containing protein 1a with zinc fingers (Prdm1a), Prdm1b, T-cell immunoglobulin mucin family member 3 (Tim-3), phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthase (Paics), NADH dehydrogenase subunit 4 (ND4) and sciellin (Scl). Co-immunoprecipitation confirmed the interaction of medaka Prmt5 and Mep50. Predicted structures of medaka Prtm5 and Mep50 are similar to that of human PRMT5 and MEP50. Conclusion: Medaka Mep50, Prdm1a, Prdm1b, Apo-AI, Tim-3, Paics, ND4, and Scl bind with Prmt5.

1994 ◽  
Vol 14 (10) ◽  
pp. 6635-6646
Author(s):  
J A Diehl ◽  
M Hannink

Protein-protein interactions between the CCAAT box enhancer-binding proteins (C/EBP) and the Rel family of transcription factors have been implicated in the regulation of cytokine gene expression. We have used sequence-specific DNA affinity chromatography to purify a complex from avian T cells that binds to a consensus C/EBP motif. Our results provide evidence that Rel-related proteins are components of the C/EBP-DNA complex as a result of protein-protein interactions with the C/EBP proteins. A polyclonal antiserum raised against the Rel homology domain of v-Rel and antisera raised against two human RelA-derived peptides specifically induced a supershift of the C/EBP-DNA complex in mobility shift assays using the affinity-purified C/EBP. In addition, several kappa B-binding proteins copurified with the avian C/EBP complex through two rounds of sequence-specific DNA affinity chromatography. The kappa B-binding proteins are distinct from the C/EBP proteins that directly contact DNA containing the C/EBP binding site. The identification of a protein complex that binds specifically to a consensus C/EBP site and contains both C/EBP and Rel family members suggests a novel mechanism for regulation of gene expression by Rel family proteins.


2019 ◽  
Vol 20 (14) ◽  
pp. 3462 ◽  
Author(s):  
Pavlin ◽  
Qasem ◽  
Sameach ◽  
Gevorkyan-Airapetov ◽  
Ritacco ◽  
...  

Appropriate maintenance of Cu(I) homeostasis is an essential requirement for proper cell function because its misregulation induces the onset of major human diseases and mortality. For this reason, several research efforts have been devoted to dissecting the inner working mechanism of Cu(I)-binding proteins and transporters. A commonly adopted strategy relies on mutations of cysteine residues, for which Cu(I) has an exquisite complementarity, to serines. Nevertheless, in spite of the similarity between these two amino acids, the structural and functional impact of serine mutations on Cu(I)-binding biomolecules remains unclear. Here, we applied various biochemical and biophysical methods, together with all-atom simulations, to investigate the effect of these mutations on the stability, structure, and aggregation propensity of Cu(I)-binding proteins, as well as their interaction with specific partner proteins. Among Cu(I)-binding biomolecules, we focused on the eukaryotic Atox1-ATP7B system, and the prokaryotic CueR metalloregulator. Our results reveal that proteins containing cysteine-to-serine mutations can still bind Cu(I) ions; however, this alters their stability and aggregation propensity. These results contribute to deciphering the critical biological principles underlying the regulatory mechanism of the in-cell Cu(I) concentration, and provide a basis for interpreting future studies that will take advantage of cysteine-to-serine mutations in Cu(I)-binding systems.


2000 ◽  
Vol 353 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Robert D. BURGOYNE ◽  
Jamie L. WEISS

Ca2+ plays a central role in the function of neurons as the trigger for neurotransmitter release, and many aspects of neuronal activity, from rapid modulation to changes in gene expression, are controlled by Ca2+. These actions of Ca2+ must be mediated by Ca2+-binding proteins, including calmodulin, which is involved in Ca2+ regulation, not only in neurons, but in most other cell types. A large number of other EF-hand-containing Ca2+-binding proteins are known. One family of these, the neuronal calcium sensor (NCS) proteins, has a restricted expression in retinal photoreceptors or neurons and neuroendocrine cells, suggesting that they have specialized roles in these cell types. Two members of the family (recoverin and guanylate cyclase-activating protein) have established roles in the regulation of phototransduction. Despite close sequence similarities, the NCS proteins have distinct neuronal distributions, suggesting that they have different functions. Recent work has begun to demonstrate the physiological roles of members of this protein family. These include roles in the modulation of neurotransmitter release, control of cyclic nucleotide metabolism, biosynthesis of polyphosphoinositides, regulation of gene expression and in the direct regulation of ion channels. In the present review we describe the known sequences and structures of the NCS proteins, information on their interactions with target proteins and current knowledge about their cellular and physiological functions.


2010 ◽  
Vol 43 (1) ◽  
pp. 1-21 ◽  
Author(s):  
Aaron Klug

AbstractA long-standing goal of molecular biologists has been to construct DNA-binding proteins for the control of gene expression. The classical Cys2His2 (C2H2) zinc finger design is ideally suited for such purposes. Discriminating between closely related DNA sequences both in vitro and in vivo, this naturally occurring design was adopted for engineering zinc finger proteins (ZFPs) to target genes specifically.Zinc fingers were discovered in 1985, arising from the interpretation of our biochemical studies on the interaction of the Xenopus protein transcription factor IIIA (TFIIIA) with 5S RNA. Subsequent structural studies revealed its three-dimensional structure and its interaction with DNA. Each finger constitutes a self-contained domain stabilized by a zinc (Zn) ion ligated to a pair of cysteines and a pair of histidines and also by an inner structural hydrophobic core. This discovery showed not only a new protein fold but also a novel principle of DNA recognition. Whereas other DNA-binding proteins generally make use of the 2-fold symmetry of the double helix, functioning as homo- or heterodimers, zinc fingers can be linked linearly in tandem to recognize nucleic acid sequences of varying lengths. This modular design offers a large number of combinatorial possibilities for the specific recognition of DNA (or RNA). It is therefore not surprising that the zinc finger is found widespread in nature, including 3% of the genes of the human genome.The zinc finger design can be used to construct DNA-binding proteins for specific intervention in gene expression. By fusing selected zinc finger peptides to repression or activation domains, genes can be selectively switched off or on by targeting the peptide to the desired gene target. It was also suggested that by combining an appropriate zinc finger peptide with other effector or functional domains, e.g. from nucleases or integrases to form chimaeric proteins, genomes could be modified or manipulated.The first example of the power of the method was published in 1994 when a three-finger protein was constructed to block the expression of a human oncogene transformed into a mouse cell line. The same paper also described how a reporter gene was activated by targeting an inserted 9-base pair (bp) sequence, which acts as the promoter. Thus, by fusing zinc finger peptides to repression or activation domains, genes can be selectively switched off or on. It was also suggested that, by combining zinc fingers with other effector or functional domains, e.g. from nucleases or integrases, to form chimaeric proteins, genomes could be manipulated or modified.Several applications of such engineered ZFPs are described here, including some of therapeutic importance, and also their adaptation for breeding improved crop plants.


2017 ◽  
Vol 63 (4) ◽  
pp. 316-320
Author(s):  
O.A. Buneeva ◽  
A.T. Kopylov ◽  
L.N. Nerobkova ◽  
I.G. Kapitsa ◽  
V.G. Zgoda ◽  
...  

Isatin (indole-2,3-dione) is an endogenous indole found in the mammalian brain, peripheral organs and body fluids. It acts as a neuroprotector, which decreases manifestation of locomotor impairments in animal models of Parkinson's disease. A wide range of biological activity of isatin is associated with interaction of this regulator with numerous isatin-binding proteins. The aim of this study was to investigate the profile of brain isatin-binding proteins in mice with MPTP-induced Parkinsonism (90 min and seven days after administration of this neurotoxin). A single dose administration of MPTP (30 mg/kg, ip.) was accompanied by locomotor impairments in the open field test 90 min after administration; seven days after MPTP administration locomotor activity of mice significantly improved but did not reach the control level. Five independent experiments on proteomic profiling of isatin-binding proteins resulted in confident identification of 96±12 proteins. Development of MPTP-induced locomotor impairments was accompanied by a significant decrease in the number of isatin-binding proteins (63±6; n=5; p<0.01). Seven days after MPTP administration the total number of identified proteins increased and reached the control level (132±34; n=4). The profiles of isatin-binding proteins were rather specific for each group of mice: in the control group these proteins (which were not found in both groups of MPTP-treated mice) represented more than 70% of total proteins. In the case of MPTP treated mice this parameter was 60% (90 min after MPTP administration) and >82% (seven days after MPTP administration). The major changes were found in the groups of isatin-binding proteins involved into cytoskeleton formation and exocytosis, regulation of gene expression, cell division and differentiation and also proteins involved in signal transduction.


2020 ◽  
Vol 477 (2) ◽  
pp. 509-524
Author(s):  
Oumayma Rouis ◽  
Cédric Broussard ◽  
François Guillonneau ◽  
Jean-Baptiste Boulé ◽  
Emmanuelle Delagoutte

DNA hemicatenanes (HCs) are four-way junctions in which one strand of a double-stranded helix is catenated with one strand of another double-stranded DNA. Frequently mentioned as DNA replication, recombination and repair intermediates, they have been proposed to participate in the spatial organization of chromosomes and in the regulation of gene expression. To explore potential roles of HCs in genome metabolism, we sought to purify proteins capable of binding specifically HCs by fractionating nuclear extracts from HeLa cells. This approach identified three RNA-binding proteins: the Tudor-staphylococcal nuclease domain 1 (SND1) protein and two proteins from the Drosophila behavior human splicing family, the paraspeckle protein component 1 and the splicing factor proline- and glutamine-rich protein. Since these proteins were partially pure after fractionation, truncated forms of these proteins were expressed in Escherichia coli and purified to near homogeneity. The specificity of their interaction with HCs was re-examined in vitro. The two truncated purified SND1 proteins exhibited specificity for HCs, opening the interesting possibility of a link between the basic transcription machinery and HC structures via SND1.


2020 ◽  
Vol 21 (18) ◽  
pp. 6835
Author(s):  
Jonas Weiße ◽  
Julia Rosemann ◽  
Vanessa Krauspe ◽  
Matthias Kappler ◽  
Alexander W. Eckert ◽  
...  

Nearly 7.5% of all human protein-coding genes have been assigned to the class of RNA-binding proteins (RBPs), and over the past decade, RBPs have been increasingly recognized as important regulators of molecular and cellular homeostasis. RBPs regulate the post-transcriptional processing of their target RNAs, i.e., alternative splicing, polyadenylation, stability and turnover, localization, or translation as well as editing and chemical modification, thereby tuning gene expression programs of diverse cellular processes such as cell survival and malignant spread. Importantly, metastases are the major cause of cancer-associated deaths in general, and particularly in oral cancers, which account for 2% of the global cancer mortality. However, the roles and architecture of RBPs and RBP-controlled expression networks during the diverse steps of the metastatic cascade are only incompletely understood. In this review, we will offer a brief overview about RBPs and their general contribution to post-transcriptional regulation of gene expression. Subsequently, we will highlight selected examples of RBPs that have been shown to play a role in oral cancer cell migration, invasion, and metastasis. Last but not least, we will present targeting strategies that have been developed to interfere with the function of some of these RBPs.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1539 ◽  
Author(s):  
Yogesh Saini ◽  
Jian Chen ◽  
Sonika Patial

Post-transcriptional regulation of gene expression plays a key role in cellular proliferation, differentiation, migration, and apoptosis. Increasing evidence suggests dysregulated post-transcriptional gene expression as an important mechanism in the pathogenesis of cancer. The tristetraprolin family of RNA-binding proteins (RBPs), which include Zinc Finger Protein 36 (ZFP36; commonly referred to as tristetraprolin (TTP)), Zinc Finger Protein 36 like 1 (ZFP36L1), and Zinc Finger Protein 36 like 2 (ZFP36L2), play key roles in the post-transcriptional regulation of gene expression. Mechanistically, these proteins function by binding to the AU-rich elements within the 3′-untranslated regions of their target mRNAs and, in turn, increasing mRNA turnover. The TTP family RBPs are emerging as key regulators of multiple biological processes relevant to cancer and are aberrantly expressed in numerous human cancers. The TTP family RBPs have tumor-suppressive properties and are also associated with cancer prognosis, metastasis, and resistance to chemotherapy. Herein, we summarize the various hallmark molecular traits of cancers that are reported to be regulated by the TTP family RBPs. We emphasize the role of the TTP family RBPs in the regulation of trait-associated mRNA targets in relevant cancer types/cell lines. Finally, we highlight the potential of the TTP family RBPs as prognostic indicators and discuss the possibility of targeting these TTP family RBPs for therapeutic benefits.


Acta Naturae ◽  
2017 ◽  
Vol 9 (2) ◽  
pp. 4-16 ◽  
Author(s):  
E. E. Alemasova ◽  
O. I. Lavrik

RNA-binding proteins (RBPs) regulate RNA metabolism, from synthesis to decay. When bound to RNA, RBPs act as guardians of the genome integrity at different levels, from DNA damage prevention to the post-transcriptional regulation of gene expression. Recently, RBPs have been shown to participate in DNA repair. This fact is of special interest as DNA repair pathways do not generally involve RNA. DNA damage in higher organisms triggers the formation of the RNA-like polymer - poly(ADP-ribose) (PAR). Nucleic acid-like properties allow PAR to recruit DNA- and RNA-binding proteins to the site of DNA damage. It is suggested that poly(ADP-ribose) and RBPs not only modulate the activities of DNA repair factors, but that they also play an important role in the formation of transient repairosome complexes in the nucleus. Cytoplasmic biomolecules are subjected to similar sorting during the formation of RNA assemblages by functionally related mRNAs and promiscuous RBPs. The Y-box-binding protein 1 (YB-1) is the major component of cytoplasmic RNA granules. Although YB-1 is a classic RNA-binding protein, it is now regarded as a non-canonical factor of DNA repair.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 217
Author(s):  
Julian Bailes ◽  
Mikhail Soloviev

Insulin-like growth factor-1 (IGF-1) is the principal mediator of growth hormone (GH), plays a crucial role in promoting cell growth and differentiation in childhood and continues to have an anabolic effect in adults. IGF-1 is part of a wide network of growth factors, receptors and binding proteins involved in mediating cellular proliferation, differentiation and apoptosis. Bioavailability of IGF-1 is affected by insulin-like growth factor binding proteins (IGFBPs) which bind IGF-1 in circulation with an affinity equal to or greater than that of the IGF-1 receptor (IGF-1R). The six IGFBPs serve as carrier proteins and bind approximately 98% of all circulating IGF-1. Other proteins known to bind IGF-1 include ten IGFBP-related proteins (IGFBP-rPs), albeit with lower affinities than the IGFBPs. IGF-1 expression levels vary in a number of clinical conditions suggesting it has the potential to provide crucial information as to the state of an individual’s health. IGF-1 is also a popular doping agent in sport and has featured in many high-profile doping cases in recent years. However, the existence of IGFBPs significantly reduces the levels of immunoreactive IGF-1 in samples, requiring multiple pre-treatment steps that reduce reproducibility and complicates interpretation of IGF-1 assay results. Here we provide an overview of the IGF network of growth factors, their receptors and the entirety of the extended family of IGFBPs, IGFBP-rPs, E peptides as well as recombinant IGF-1 and their derivatives. We also discuss issues related to the detection and quantification of bioavailable IGF-1.


Sign in / Sign up

Export Citation Format

Share Document