In Vitro Synergistic Interaction Between Amide Piplartine and Antimicrobial Peptide Dermaseptin Against Schistosoma mansoni Schistosomula and Adult Worms

2012 ◽  
Vol 20 (2) ◽  
pp. 301-309 ◽  
Author(s):  
J. de Moraes ◽  
J. Keiser ◽  
K. Ingram ◽  
C. Nascimento ◽  
L.F. Yamaguchi ◽  
...  
2011 ◽  
Vol 8 (3) ◽  
pp. 548-558 ◽  
Author(s):  
Josué de Moraes ◽  
Carlos Nascimento ◽  
Leiz M. C. V. Miura ◽  
José R. S. A. Leite ◽  
Eliana Nakano ◽  
...  

Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
AIO Salloum ◽  
R Lucarini ◽  
MG Tozatti ◽  
J Medeiros ◽  
MLA Silva ◽  
...  

Author(s):  
Daria Monaldi ◽  
Dante Rotili ◽  
Julien Lancelot ◽  
Martin Marek ◽  
Nathalie Wössner ◽  
...  

The only drug for treatment of Schistosomiasis is Praziquantel, and the possible emergence of resistance makes research on novel therapeutic agents necessary. Targeting of Schistosoma mansoni epigenetic enzymes, which regulate the parasitic life cycle, emerged as promising approach. Due to the strong effects of human Sirtuin inhibitors on parasite survival and reproduction, Schistosoma sirtuins were postulated as therapeutic targets. In vitro testing of synthetic substrates of S. mansoni Sirtuin 2 (SmSirt2) and kinetic experiments on a myristoylated peptide demonstrated lysine long chain deacylation as an intrinsic SmSirt2 activity for the first time. Focused in vitro screening of the GSK Kinetobox library and structure-activity relationships (SAR) of identified hits, led to the first SmSirt2 inhibitors with activity in the low micromolar range. Several SmSirt2 inhibitors showed potency against both larval schistosomes (viability) and adult worms (pairing, egg laying) in culture without general toxicity to human cancer cells.<br>


2021 ◽  
Vol 14 (7) ◽  
pp. 686
Author(s):  
Raquel Porto ◽  
Ana C. Mengarda ◽  
Rayssa A. Cajas ◽  
Maria C. Salvadori ◽  
Fernanda S. Teixeira ◽  
...  

The intravascular parasitic worm Schistosoma mansoni is a causative agent of schistosomiasis, a disease of great global public health significance. Praziquantel is the only drug available to treat schistosomiasis and there is an urgent demand for new anthelmintic agents. Adopting a phenotypic drug screening strategy, here, we evaluated the antiparasitic properties of 46 commercially available cardiovascular drugs against S. mansoni. From these screenings, we found that amiodarone, telmisartan, propafenone, methyldopa, and doxazosin affected the viability of schistosomes in vitro, with effective concentrations of 50% (EC50) and 90% (EC90) values ranging from 8 to 50 µM. These results were further supported by scanning electron microscopy analysis. Subsequently, the most effective drug (amiodarone) was further tested in a murine model of schistosomiasis for both early and chronic S. mansoni infections using a single oral dose of 400 mg/kg or 100 mg/kg daily for five consecutive days. Amiodarone had a low efficacy in chronic infection, with the worm and egg burden reduction ranging from 10 to 30%. In contrast, amiodarone caused a significant reduction in worm and egg burden in early infection (>50%). Comparatively, treatment with amiodarone is more effective in early infection than praziquantel, demonstrating the potential role of this cardiovascular drug as an antischistosomal agent.


Author(s):  
Annika S. Mokosch ◽  
Stefanie Gerbig ◽  
Christoph G. Grevelding ◽  
Simone Haeberlein ◽  
Bernhard Spengler

AbstractSchistosoma mansoni is a parasitic flatworm causing schistosomiasis, an infectious disease affecting several hundred million people worldwide. Schistosomes live dioeciously, and upon pairing with the male, the female starts massive egg production, which causes pathology. Praziquantel (PZQ) is the only drug used, but it has an inherent risk of resistance development. Therefore, alternatives are needed. In the context of drug repurposing, the cancer drug imatinib was tested, showing high efficacy against S. mansoni in vitro. Besides the gonads, imatinib mainly affected the integrity of the intestine in males and females. In this study, we investigated the potential uptake and distribution of imatinib in adult schistosomes including its distribution kinetics. To this end, we applied for the first time atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) for drug imaging in paired S. mansoni. Our results indicate that imatinib was present in the esophagus and intestine of the male as early as 20 min after in vitro exposure, suggesting an oral uptake route. After one hour, the drug was also found inside the paired female. The detection of the main metabolite, N-desmethyl imatinib, indicated metabolization of the drug. Additionally, a marker signal for the female ovary was successfully applied to facilitate further conclusions regarding organ tropism of imatinib. Our results demonstrate that AP-SMALDI MSI is a useful method to study the uptake, tissue distribution, and metabolization of imatinib in S. mansoni. The results suggest using AP-SMALDI MSI also for investigating other antiparasitic compounds and their metabolites in schistosomes and other parasites. Graphical abstract


2021 ◽  
Vol 153 ◽  
pp. 104795
Author(s):  
Ziqi Chen ◽  
Xinping Xi ◽  
Yueyang Lu ◽  
Haiyan Hu ◽  
Ziyi Dong ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaitlin S. Witherell ◽  
Jason Price ◽  
Ashok D. Bandaranayake ◽  
James Olson ◽  
Douglas R. Call

AbstractMultidrug-resistant bacteria are a growing global concern, and with increasingly prevalent resistance to last line antibiotics such as colistin, it is imperative that alternative treatment options are identified. Herein we investigated the mechanism of action of a novel antimicrobial peptide (CDP-B11) and its effectiveness against multidrug-resistant bacteria including Escherichia coli #0346, which harbors multiple antibiotic-resistance genes, including mobilized colistin resistance gene (mcr-1). Bacterial membrane potential and membrane integrity assays, measured by flow cytometry, were used to test membrane disruption. Bacterial growth inhibition assays and time to kill assays measured the effectiveness of CDP-B11 alone and in combination with colistin against E. coli #0346 and other bacteria. Hemolysis assays were used to quantify the hemolytic effects of CDP-B11 alone and in combination with colistin. Findings show CDP-B11 disrupts the outer membrane of E. coli #0346. CDP-B11 with colistin inhibits the growth of E. coli #0346 at ≥ 10× lower colistin concentrations compared to colistin alone in Mueller–Hinton media and M9 media. Growth is significantly inhibited in other clinically relevant strains, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In rich media and minimal media, the drug combination kills bacteria at a lower colistin concentration (1.25 μg/mL) compared to colistin alone (2.5 μg/mL). In minimal media, the combination is bactericidal with killing accelerated by up to 2 h compared to colistin alone. Importantly, no significant red blood hemolysis is evident for CDP-B11 alone or in combination with colistin. The characteristics of CDP-B11 presented here indicate that it can be used as a potential monotherapy or as combination therapy with colistin for the treatment of multidrug-resistant infections, including colistin-resistant infections.


Sign in / Sign up

Export Citation Format

Share Document