Synthesis of Silver Nanoparticles and their Biomedical Applications - A Comprehensive Review

2019 ◽  
Vol 25 (24) ◽  
pp. 2650-2660 ◽  
Author(s):  
Rajasree Shanmuganathan ◽  
Indira Karuppusamy ◽  
Muthupandian Saravanan ◽  
Harshiny Muthukumar ◽  
Kumar Ponnuchamy ◽  
...  

Generally, silver is considered as a noble metal used for treating burn wound infections, open wounds and cuts. However, the emerging nanotechnology has made a remarkable impact by converting metallic silver into silver nanoparticles (AgNPs) for better applications. The advancement in technology has improved the synthesis of NPs using biological method instead of physical and chemical methods. Nonetheless, synthesizing AgNPs using biological sources is ecofriendly and cost effective. Till date, AgNPs are widely used as antibacterial agents; therefore, a novel idea is needed for the successful use of AgNPs as therapeutic agents to uncertain diseases and infections. In biomedicine, AgNPs possess significant advantages due to their physical and chemical versatility. Indeed, the toxicity concerns regarding AgNPs have created the need for non-toxic and ecofriendly approaches to produce AgNPs. The applications of AgNPs in nanogels, nanosolutions, silver based dressings and coating over medical devices are under progress. Still, an improvised version of AgNPs for extended applications in an ecofriendly manner is the need of the hour. Therefore, the present review emphasizes the synthesis methods, modes of action under dissipative conditions and the various biomedical applications of AgNPs in detail.

Author(s):  
LATIF MS ◽  
ABBAS S ◽  
KORMIN F ◽  
MUSTAFA MK

The use of metal nanoparticles (MNPs) in various fields is increasing day-by-day leading to a genuine concern about the issues related to their environmental and biological safety. The major approaches for the synthesis of NPs include physical and chemical methods which are expensive and hazardous to health in addition to being toxic to the environment. This review highlights the potential of plant extracts to carry out the synthesis of MNPs with a special emphasis on the role of flavonoids in nanosynthesis. This green and clean approach have been actively utilized in recent years as an alternative to conventional hazardous approaches. It has proved as cost-effective, non-toxic, less time and labor consuming, efficient, and eco-friendly method for the synthesis of MNPs with specific biological actions. This review also focuses on the role of polyphenols, including the flavonoids as bioreductants of metal salts for the synthesis of NPs along with their biomedical applications. Various examples of the MNPs, along with their biological actions, have also been summarized.


Author(s):  
Angela SPOIALA ◽  
Denisa FICAI ◽  
Anton FICAI ◽  
Luminita CRACIUN ◽  
Aurel Mihail TITU ◽  
...  

This paper aims to review the challenges, toxicity, and routes of synthesis and usage of silver nanoparticles in different applications but also highlighting their sustainability from both medical and environmental issues. Regarding their toxicity, it is known that silver nanoparticles can destroy over 650 microorganisms comparing with antibiotics. Supplementary, will be presented in a comparative manner some conventional synthesis routes (physical and chemical methods) and green synthesis routes using plant extracts. The approach using plant extracts have various advantages comparing with physical, chemical and microbial synthesis methods because there is no need to use chemicals, wasteful purifications and high energy requirements. The paper presents an overview on “green nanotechnology” focused on using either biological micro-organisms or plant extracts as an alternative to the classical chemical and physical methods. An important issue discussed in the paper is an overview of the synthesis routes of silver nanoparticles, some expected applications of silver based active agents and their toxicity and challenges that must be overcome. Also, it needs to focus our attention on the dismissal of silver nanoparticles into the environment and especially in water systems, fact which suggests that this issue must be fully understood and applied the law.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Ram Prasad

Nanobiotechnology is emerging as a field of applied biological science and nanotechnology. Synthesis of nanoparticles is done by various physical and chemical methods but the biological methods are relatively simple, cost-effective, nontoxic, and environmentally friendly methods. The present review focuses on the synthesis of nanoparticles with special emphasis on the use of plants parts for the synthesis process, its applications, and future prospectus.


2021 ◽  
Vol 11 (1) ◽  
pp. 3218-3231

The silver (Ag) metal is considered a very useful metal for treating consume wound diseases, open wounds, and cuts, respectively. Nowadays, nanotechnology has created a surprising effect by changing over metallic silver into silver nanoparticles (AgNPs) for better applications. However, according to advanced technology, the synthesis of nanoparticles occurs by using organic or biological techniques rather than physical and chemical techniques. Also, the synthesis of silver nanoparticles (AgNPs) using biological or organic sources is cost-effective and eco-friendly. Silver nanoparticles (AgNPs) are broadly used as antibacterial specialists, helping us cure novel diseases and questionable sicknesses. In biomedicine, silver nanoparticles have huge points of interest because of their physical and synthetic flexibility. The uses of silver nanoparticles (AgNPs) in nano-gels, nano-fluids, silver-based coating over food and medical devices are advancing. Still, there is a need to innovate a better version of silver nanoparticles for vigorous use in an eco-friendly way. So, this review describes the methods of synthesis, activities under various conditions, and different biomedical uses of silver nanoparticles (AgNPs) in detail.


Author(s):  
Angela Spoiala ◽  
Denisa Ficai ◽  
Anton Ficai ◽  
Luminita Craciun ◽  
Aurel Mihail ŢÎŢU ◽  
...  

This paper aims to review the challenges, toxicity, and routes of synthesis and usage of silver nanoparticles in different medical applications but also highlighting their sustainability from both medical and environmental issues. Regarding their toxicity, it is known that silver nanoparticles can destroy over 650 microorganisms comparing with antibiotics. Supplementary, will be presented in a comparative manner some conventional synthesis routes (physical and chemical methods) and green synthesis routes using plant extracts. The approach using plant extracts have various advantages comparing with physical, chemical and microbial synthesis methods because there is no need to use chemicals, wasteful purifications and high energy requirements. The main focus in “green nanotechnology” was to use either biological micro-organisms or plant extracts which are an alternative to the classical chemical and physical methods. An important issue that is discussed in the paper is the potential toxicity of silver nanoparticles that may have on human health or on the environment, which powerfully indicates that, the usage and removal of silver nanoparticles must be carefully examined. Also, it needs to focus our attention on the dismissal of silver nanoparticles into the environment and especially in water systems, fact which suggests that this issue must be fully understood and apply accordingly the law.


2016 ◽  
Vol 20 (17) ◽  
pp. 1797-1812 ◽  
Author(s):  
Xiaoyue Yu ◽  
Cuie Tang ◽  
Shanbai Xiong ◽  
Qijuan Yuan ◽  
Zhipeng Gu ◽  
...  

Author(s):  
Geetanjali Singh ◽  
Pramod Kumar Sharma ◽  
Rishabha Malviya

Aim/Objective: The author writes the manuscript by reviewing the literatures related to the biomedical application of metallic nanoparticles. The term metal nanoparticles are used to describe the nanosized metals with the dimension within the size range of 1-100 nm. Methods: The preparation of metallic nanoparticles and their application is an influential area for research. Among various physical and chemical methods (viz. chemical reduction, thermal decomposition, etc.) for synthesizing silver nanoparticles, biological methods have been suggested as possible eco-friendly alternatives. The synthesis of metallic nanoparticles is having many problems inclusive of solvent toxicity, the formation of hazardous byproducts and consumption of energy. So it is important to design eco-friendly benign procedures for the synthesis of metallic nanoparticles. Results: From the literature survey, we concluded that metallic nanoparticles have applications in the treatment of different diseases. Metallic nanoparticles are having a great advantage in the detection of cancer, diagnosis, and therapy. And it can also have properties such as antifungal, antibacterial, anti-inflammatory, antiviral and anti-angiogenic. Conclusion: In this review, recent upcoming advancement of biomedical application of nanotechnology and their future challenges has been discussed.


2021 ◽  
Vol 09 ◽  
Author(s):  
Sarvat Zafar ◽  
Aiman Zafar ◽  
Fakhra Jabeen ◽  
Miad Ali Siddiq

: Nanotechnology studies the various phenomena of physio-chemical procedures and biological properties for the generation of nanosized particles, and their rising challenges in the various sectors, like medicine, engineering, agriculture, electronic, and environmental studies. The nanosized particles exhibit good anti-microbial, anti-inflammatory, cytotoxic, drug delivery, anti-parasitic, anti-coagulant and catalytic properties because of their unique dimensions with large surface area, chemical stability and higher binding density for the accumulation of various bio-constituents on their surfaces. Biological approaches for the synthesis of silver nanoparticles (AgNPs) have been reviewed because it is an easy and single-step protocol and a viable substitute for the synthetic chemical-based procedures. Physical and chemical approaches for the production of AgNPs are also mentioned herein. Biological synthesis has drawn attention because it is cost-effective, faster, non-pathogenic, environment-friendly, easy to scale-up for large-scale synthesis, and having no demand for usage of high pressure, energy, temperature, or noxious chemical ingredients, and safe for human therapeutic use. Therefore, the collaboration of nanomaterials with bio-green approaches could extend the utilization of biological and cytological properties compatible with AgNPs. In this perspective, there is an immediate need to develop ecofriendly and biocompatible techniques, which strengthen efficacy against microbes and minimize toxicity for human cells. The present study introduces the biological synthesis of silver nanoparticles, and their potential biomedical applications have also been reviewed.


2013 ◽  
Vol 756 ◽  
pp. 106-111 ◽  
Author(s):  
Selvaraj Arokiyaraj ◽  
Udaya Prakash Nyayiru Kannaian ◽  
Vijay Elakkya ◽  
T. Kamala ◽  
S. Bhuvaneswari ◽  
...  

The aim of the present study is to synthesize silver nanoparticles, using an aqueous floral extract of common Lotus, i.e Nelumbo nucifera. The synthesized nanoparticles were characterized using UV, TEM, EDX, AFM & XRD. The synthesized AgNPs were confirmed due to the colour change from colourless to reddish brown just after the addition of the aqueous floral extract of Nelumbo nucifera. The UV results of AgNPs showed the excitation of surface Plasmon resonance band at 427 nm. TEM results showed that the synthesized AgNPs were uniformed; monodispersed,spherical in shape and the particle size were found to be 77.81 ± 3.54 nm. EDX spectrum of AgNPs confirms strong signals from Ag (64%) and other elements such as C, O and Cl. The morphology of the synthesized AgNPs by AFM analysis resembled the TEM micrograph. The crystalline nature of the AgNPs was confirmed by XRD. The present study concludes that the aqueous floral extract of Nelumbo nucifera could be used as an effective reducing agent for the synthesis of AgNP. The green synthesis ofsilver nanoparticles is non-toxic and cost-effective and thus remains to be an alternative method to other physical and chemical reduction methods.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 380 ◽  
Author(s):  
Diana Rafael ◽  
Fernanda Andrade ◽  
Francesc Martinez-Trucharte ◽  
Jana Basas ◽  
Joaquín Seras-Franzoso ◽  
...  

Hydrogels (HG) have recognized benefits as drug delivery platforms for biomedical applications. Their high sensitivity to sterilization processes is however one of the greatest challenges regarding their clinical translation. Concerning infection diseases, prevention of post-operatory related infections is crucial to ensure appropriate patient recovery and good clinical outcomes. Silver nanoparticles (AgNPs) have shown good antimicrobial properties but sustained release at the right place is required. Thus, we produced and characterized thermo-sensitive HG based on Pluronic® F127 loaded with AgNPs (HG-AgNPs) and their integrity and functionality after sterilization by dry-heat and autoclave methods were carefully assessed. The quality attributes of HG-AgNPs were seriously affected by dry-heat methods but not by autoclaving methods, which allowed to ensure the required sterility. Also, direct sterilization of the final HG-AgNPs product proved more effective than of the raw material, allowing simpler production procedures in non-sterile conditions. The mechanical properties were assessed in post mortem rat models and the HG-AgNPs were tested for its antimicrobial properties in vitro using extremely drug-resistant (XDR) clinical strains. The produced HG-AgNPs prove to be versatile, easy produced and cost-effective products, with activity against XDR strains and an adequate gelation time and spreadability features and optimal for in situ biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document