Abstinence from chronic methylphenidate exposure modifies cannabinoid receptor 1 levels in the brain in a dose-dependent manner

2021 ◽  
Vol 27 ◽  
Author(s):  
Carly Connor ◽  
John Hamilton ◽  
Lisa Robison ◽  
Michael Hadjiargyrou ◽  
David Komatsu ◽  
...  

Introduction: Methylphenidate (MP) is a widely used psychostimulant prescribed for Attention Deficit Hyperactivity Disorder, and is also used illicitly by healthy individuals. Chronic exposure to MP has been shown to affect physiology, behavior, and neurochemistry. Methods: The present study examined its effect on the endocannabinoid system. Adolescent rats had daily oral access to either water (control), low dose MP (4/10 mg/kg), or high dose MP (30/60 mg/kg). After 13 weeks of exposure, half of the rats in each group were euthanized, however the remaining rats underwent a four-week long abstinence period. Cannabinoid receptor 1 binding (CB1) was measured with in vitro autoradiography using [3H] SR141716A. Results: Rats who underwent a 4-week abstinence period after exposure to chronic HD MP showed increased binding compared to rats with no abstinence period in several cortical and basal ganglia regions of the brain. In contrast to this, rats who underwent a 4-week abstinence period after exposure to chronic LD MP showed lower binding compared to rats with no abstinence period in mainly the basal ganglia regions and in the hindlimb region of the somatosensory cortex. Following 4 weeks of drug abstinence, rats who were previously given HD MP showed higher [ 3H] SR141716A binding than rats given LD MP in many of the cortical and basal ganglia regions examined. These results highlight biphasic effects of MP treatment on cannabinoid receptor levels. Abstinence from HD MP seemed to increase CB1 receptor levels while abstinence from LD MP seemed to decrease CB1 levels. Conclusion: Given the prolific expression of cannabinoid receptors throughout the brain, many types of behaviors may be affected as a result of MP abstinence. Further research will be needed to help identify these behavioral changes.

2017 ◽  
Vol 114 (19) ◽  
pp. 5005-5010 ◽  
Author(s):  
Nandini Acharya ◽  
Sasi Penukonda ◽  
Tatiana Shcheglova ◽  
Adam T. Hagymasi ◽  
Sreyashi Basu ◽  
...  

Endogenous cannabinoids (endocannabinoids) are small molecules biosynthesized from membrane glycerophospholipid. Anandamide (AEA) is an endogenous intestinal cannabinoid that controls appetite and energy balance by engagement of the enteric nervous system through cannabinoid receptors. Here, we uncover a role for AEA and its receptor, cannabinoid receptor 2 (CB2), in the regulation of immune tolerance in the gut and the pancreas. This work demonstrates a major immunological role for an endocannabinoid. The pungent molecule capsaicin (CP) has a similar effect as AEA; however, CP acts by engagement of the vanilloid receptor TRPV1, causing local production of AEA, which acts through CB2. We show that the engagement of the cannabinoid/vanilloid receptors augments the number and immune suppressive function of the regulatory CX3CR1hi macrophages (Mϕ), which express the highest levels of such receptors among the gut immune cells. Additionally, TRPV1−/− or CB2−/− mice have fewer CX3CR1hi Mϕ in the gut. Treatment of mice with CP also leads to differentiation of a regulatory subset of CD4+ cells, the Tr1 cells, in an IL-27–dependent manner in vitro and in vivo. In a functional demonstration, tolerance elicited by engagement of TRPV1 can be transferred to naïve nonobese diabetic (NOD) mice [model of type 1 diabetes (T1D)] by transfer of CD4+ T cells. Further, oral administration of AEA to NOD mice provides protection from T1D. Our study unveils a role for the endocannabinoid system in maintaining immune homeostasis in the gut/pancreas and reveals a conversation between the nervous and immune systems using distinct receptors.


Molecules ◽  
2019 ◽  
Vol 24 (9) ◽  
pp. 1656
Author(s):  
Gabriele Murineddu ◽  
Battistina Asproni ◽  
Paola Corona ◽  
Sandra Piras ◽  
Paolo Lazzari ◽  
...  

In this work, the synthesis of the cannabinoid receptor 1 neutral antagonists 8-chloro-1-(2,4-dichlorophenyl)-N-piperidin-1-yl-4,5-dihydrobenzo-1H-6-oxa-cyclohepta[1,2-c]pyrazole-3-carboxamide 1a and its deaza N-cyclohexyl analogue 1b has led to a deepening of the structure-activity studies of this class of compounds. A series of novel 4,5-dihydrobenzo-oxa-cycloheptapyrazoles analogues of 1a,b, derivatives 1c–j, was synthesized, and their affinity towards cannabinoid receptors was determined. Representative terms were evaluated using in vitro tests and isolated organ assays. Among the derivatives, 1d and 1e resulted in the most potent CB1 receptor ligands (KiCB1 = 35 nM and 21.70 nM, respectively). Interestingly, both in vitro tests and isolated organ assays evidenced CB1 antagonist activity for the majority of the new compounds, excluding compound 1e, which showed a CB1 partial agonist behaviour. CB1 antagonist activity of 1b was further confirmed by a mouse gastrointestinal transit assay. Significant activity of the new CB1 antagonists towards food intake was showed by preliminary acute assays, evidencing the potentiality of these new derivatives in the treatment of obesity.


2001 ◽  
Vol 91 (6) ◽  
pp. 2703-2712 ◽  
Author(s):  
Stephen M. Johnson ◽  
Julia E. R. Wilkerson ◽  
Daniel R. Henderson ◽  
Michael R. Wenninger ◽  
Gordon S. Mitchell

Brain stem preparations from adult turtles were used to determine how bath-applied serotonin (5-HT) alters respiration-related hypoglossal activity in a mature vertebrate. 5-HT (5–20 μM) reversibly decreased integrated burst amplitude by ∼45% ( P < 0.05); burst frequency decreased in a dose-dependent manner with 20 μM abolishing bursts in 9 of 13 preparations ( P < 0.05). These 5-HT-dependent effects were mimicked by application of a 5-HT1A agonist, but not a 5-HT1B agonist, and were abolished by the broad-spectrum 5-HT antagonist, methiothepin. During 5-HT (20 μM) washout, frequency rebounded to levels above the original baseline for 40 min ( P < 0.05) and remained above baseline for 2 h. A 5-HT3 antagonist (tropesitron) blocked the post-5-HT rebound and persistent frequency increase. A 5-HT3 agonist (phenylbiguanide) increased frequency during and after bath application ( P < 0.05). When phenylbiguanide was applied to the brain stem of brain stem/spinal cord preparations, there was a persistent frequency increase ( P < 0.05), but neither spinal-expiratory nor -inspiratory burst amplitude were altered. The 5-HT3receptor-dependent persistent frequency increase represents a unique model of plasticity in vertebrate rhythm generation.


2011 ◽  
Vol 56 (1) ◽  
pp. 148-153 ◽  
Author(s):  
Marisa H. Miceli ◽  
Stella M. Bernardo ◽  
T. S. Neil Ku ◽  
Carla Walraven ◽  
Samuel A. Lee

ABSTRACTInfections and thromboses are the most common complications associated with central venous catheters. Suggested strategies for prevention and management of these complications include the use of heparin-coated catheters, heparin locks, and antimicrobial lock therapy. However, the effects of heparin onCandida albicansbiofilms and planktonic cells have not been previously studied. Therefore, we sought to determine thein vitroeffect of a heparin sodium preparation (HP) on biofilms and planktonic cells ofC. albicans. Because HP contains two preservatives, methyl paraben (MP) and propyl paraben (PP), these compounds and heparin sodium without preservatives (Pure-H) were also tested individually. The metabolic activity of the mature biofilm after treatment was assessed using XTT [2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction and microscopy. Pure-H, MP, and PP caused up to 75, 85, and 60% reductions of metabolic activity of the mature preformedC. albicansbiofilms, respectively. Maximal efficacy against the mature biofilm was observed with HP (up to 90%) compared to the individual compounds (P< 0.0001). Pure-H, MP, and PP each inhibitedC. albicansbiofilm formation up to 90%. A complete inhibition of biofilm formation was observed with HP at 5,000 U/ml and higher. When tested against planktonic cells, each compound inhibited growth in a dose-dependent manner. These data indicated that HP, MP, PP, and Pure-H havein vitroantifungal activity againstC. albicansmature biofilms, formation of biofilms, and planktonic cells. Investigation of high-dose heparin-based strategies (e.g., heparin locks) in combination with traditional antifungal agents for the treatment and/or prevention ofC. albicansbiofilms is warranted.


2021 ◽  
Vol 22 (15) ◽  
pp. 8051
Author(s):  
Rodrigo Teodoro ◽  
Daniel Gündel ◽  
Winnie Deuther-Conrad ◽  
Lea Ueberham ◽  
Magali Toussaint ◽  
...  

Cannabinoid receptors type 2 (CB2R) represent an attractive therapeutic target for neurodegenerative diseases and cancer. Aiming at the development of a positron emission tomography (PET) radiotracer to monitor receptor density and/or occupancy during a CB2R-tailored therapy, we herein describe the radiosynthesis of cis-[18F]1-(4-fluorobutyl-N-((1s,4s)-4-methylcyclohexyl)-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamide ([18F]LU14) starting from the corresponding mesylate precursor. The first biological evaluation revealed that [18F]LU14 is a highly affine CB2R radioligand with >80% intact tracer in the brain at 30 min p.i. Its further evaluation by PET in a well-established rat model of CB2R overexpression demonstrated its ability to selectively image the CB2R in the brain and its potential as a tracer to further investigate disease-related changes in CB2R expression.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3389
Author(s):  
Ishtiaq Ahmed ◽  
Saif Ur Rehman ◽  
Shiva Shahmohamadnejad ◽  
Muhammad Anjum Zia ◽  
Muhammad Ahmad ◽  
...  

In humans, various sites like cannabinoid receptors (CBR) having a binding affinity with cannabinoids are distributed on the surface of different cell types, where endocannabinoids (ECs) and derivatives of fatty acid can bind. The binding of these substance(s) triggers the activation of specific receptors required for various physiological functions, including pain sensation, memory, and appetite. The ECs and CBR perform multiple functions via the cannabinoid receptor 1 (CB1); cannabinoid receptor 2 (CB2), having a key effect in restraining neurotransmitters and the arrangement of cytokines. The role of cannabinoids in the immune system is illustrated because of their immunosuppressive characteristics. These characteristics include inhibition of leucocyte proliferation, T cells apoptosis, and induction of macrophages along with reduced pro-inflammatory cytokines secretion. The review seeks to discuss the functional relationship between the endocannabinoid system (ECS) and anti-tumor characteristics of cannabinoids in various cancers. The therapeutic potential of cannabinoids for cancer—both in vivo and in vitro clinical trials—has also been highlighted and reported to be effective in mice models in arthritis for the inflammation reduction, neuropathic pain, positive effect in multiple sclerosis and type-1 diabetes mellitus, and found beneficial for treating in various cancers. In human models, such studies are limited; thereby, further research is indispensable in this field to get a conclusive outcome. Therefore, in autoimmune disorders, therapeutic cannabinoids can serve as promising immunosuppressive and anti-fibrotic agents.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 386
Author(s):  
Tung-Hu Tsai ◽  
Yu-Jen Chen ◽  
Li-Ying Wang ◽  
Chen-Hsi Hsieh

This study was performed to evaluate the interaction between conventional or high-dose radiotherapy (RT) and the pharmacokinetics (PK) of regorafenib in concurrent or sequential regimens for the treatment of hepatocellular carcinoma. Concurrent and sequential in vitro and in vivo studies of irradiation and regorafenib were designed. The interactions of RT and regorafenib in vitro were examined in the human hepatoma Huh-7, HA22T and Hep G2 cell lines. The RT–PK phenomenon and biodistribution of regorafenib under RT were confirmed in a free-moving rat model. Regorafenib inhibited the viability of Huh-7 cells in a dose-dependent manner. Apoptosis in Huh-7 cells was enhanced by RT followed by regorafenib treatment. In the concurrent regimen, RT decreased the area under the concentration versus time curve (AUC)regorafenib by 74% (p = 0.001) in the RT2 Gy × 3 fraction (f’x) group and by 69% (p = 0.001) in the RT9 Gy × 3 f’x group. The AUCregorafenib was increased by 182.8% (p = 0.011) in the sequential RT2Gy × 1 f’x group and by 213.2% (p = 0.016) in the sequential RT9Gy × 1 f’x group. Both concurrent regimens, RT2Gy × 3 f’x and RT9Gy × 3 f’x, clearly decreased the biodistribution of regorafenib in the heart, liver, lung, spleen and kidneys, compared to the control (regorafenib × 3 d) group. The concurrent regimens, both RT2Gy × 3 f’x and RT9Gy × 3 f’x, significantly decreased the biodistribution of regorafenib, compared with the control group. The PK of regorafenib can be modulated both by off-target irradiation and stereotactic body radiation therapy (SBRT).


2010 ◽  
Vol 104 (9) ◽  
pp. 1297-1303 ◽  
Author(s):  
Yan-Hong Huang ◽  
Qing-Hong Zhang

The present study was undertaken to investigate the antioxidant effect of chronic ingestion of genistein (Gen) against neural death in the brain of ovariectomised (Ovx) rats. The rats were randomly divided into five groups, i.e. sham-operated (sham), Ovx-only, Ovx with 17β-oestradiol, Ovx with low (15 mg/kg) and high (30 mg/kg) doses of Gen (Gen-L and Gen-H), and were orally administered daily with drugs or vehicle for 6 weeks. The learning and memory abilities were measured by Morris water maze test. Oxidative damages in the brain were evaluated by the level of superoxide dismutase (SOD), malondialdehyde (MDA) and monoamine oxidase (MAO) activities. Neural apoptosis was shown by terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) staining and caspase-3 activity. In the visual learning and memory test, there were no significant differences among the population means of the five groups. While in the probe trial test, the Gen-L group instead of the Gen-H group exhibited reduced escape latency and increased memory frequency than the Ovx group. Although both doses of Gen could reduce acetylcholinesterase activity, only a low dose of Gen could diminish MDA activity significantly in frontal cortex and enhance SOD content in the hippocampus. In contrast, MAO content was decreased in the cortex by either dose of Gen, while in the hippocampus, only a high dose of Gen appeared to be effective. Interestingly, Gen at both the doses could attenuate the increased number of TUNEL-positive neurons and caspase-3 activity in Ovx rats. These results suggest that Gen confers protection against Ovx-induced neurodegeneration by attenuating oxidative stress, lipid peroxidation and the mitochondria-mediated apoptotic pathway in a region- and dose-dependent manner.


1995 ◽  
Vol 15 (6) ◽  
pp. 3147-3153 ◽  
Author(s):  
G A Blobel ◽  
C A Sieff ◽  
S H Orkin

High-dose estrogen administration induces anemia in mammals. In chickens, estrogens stimulate outgrowth of bone marrow-derived erythroid progenitor cells and delay their maturation. This delay is associated with down-regulation of many erythroid cell-specific genes, including alpha- and beta-globin, band 3, band 4.1, and the erythroid cell-specific histone H5. We show here that estrogens also reduce the number of erythroid progenitor cells in primary human bone marrow cultures. To address potential mechanisms by which estrogens suppress erythropoiesis, we have examined their effects on GATA-1, an erythroid transcription factor that participates in the regulation of the majority of erythroid cell-specific genes and is necessary for full maturation of erythrocytes. We demonstrate that the transcriptional activity of GATA-1 is strongly repressed by the estrogen receptor (ER) in a ligand-dependent manner and that this repression is reversible in the presence of 4-hydroxytamoxifen. ER-mediated repression of GATA-1 activity occurs on an artificial promoter containing a single GATA-binding site, as well as in the context of an intact promoter which is normally regulated by GATA-1. GATA-1 and ER bind to each other in vitro in the absence of DNA. In coimmunoprecipitation experiments using transfected COS cells, GATA-1 and ER associate in a ligand-dependent manner. Mapping experiments indicate that GATA-1 and the ER form at least two contacts, which involve the finger region and the N-terminal activation domain of GATA-1. We speculate that estrogens exert effects on erythropoiesis by modulating GATA-1 activity through protein-protein interaction with the ER. Interference with GATA-binding proteins may be one mechanism by which steroid hormones modulate cellular differentiation.


2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xinxin Yang ◽  
Haibo Yang ◽  
Fengdi Wu ◽  
Zhipeng Qi ◽  
Jiashuo Li ◽  
...  

Excessive manganese (Mn) can accumulate in the striatum of the brain following overexposure. Oxidative stress is a well-recognized mechanism in Mn-induced neurotoxicity. It has been proven that glutathione (GSH) depletion is a key factor in oxidative damage during Mn exposure. However, no study has focused on the dysfunction of GSH synthesis-induced oxidative stress in the brain during Mn exposure. The objective of the present study was to explore the mechanism of Mn disruption of GSH synthesis via EAAC1 and xCT in vitro and in vivo. Primary neurons and astrocytes were cultured and treated with different doses of Mn to observe the state of cells and levels of GSH and reactive oxygen species (ROS) and measure mRNA and protein expression of EAAC1 and xCT. Mice were randomly divided into seven groups, which received saline, 12.5, 25, and 50 mg/kg MnCl2, 500 mg/kg AAH (EAAC1 inhibitor) + 50 mg/kg MnCl2, 75 mg/kg SSZ (xCT inhibitor) + 50 mg/kg MnCl2, and 100 mg/kg NAC (GSH rescuer) + 50 mg/kg MnCl2 once daily for two weeks. Then, levels of EAAC1, xCT, ROS, GSH, malondialdehyde (MDA), protein sulfhydryl, carbonyl, 8-hydroxy-2-deoxyguanosine (8-OHdG), and morphological and ultrastructural features in the striatum of mice were measured. Mn reduced protein levels, mRNA expression, and immunofluorescence intensity of EAAC1 and xCT. Mn also decreased the level of GSH, sulfhydryl, and increased ROS, MDA, 8-OHdG, and carbonyl in a dose-dependent manner. Injury-related pathological and ultrastructure changes in the striatum of mice were significantly present. In conclusion, excessive exposure to Mn disrupts GSH synthesis through inhibition of EAAC1 and xCT to trigger oxidative damage in the striatum.


Sign in / Sign up

Export Citation Format

Share Document