Regioselective C–H selenylation of heteroarenes under metal-free conditions

2021 ◽  
Vol 25 ◽  
Author(s):  
Ricardo F. Schumacher ◽  
Roberta Cargnelutti ◽  
Adriane Sperança ◽  
Jean C. Kazmierczak ◽  
Thiago Anjos ◽  
...  

Selenium-containing heteroarenes consist of a synthetically valuable family of compounds that found applications in many different areas, such as organic synthesis, medicinal chemistry, supramolecular chemistry, and optoelectronic devices construction. Over the past decade, many advances have been achieved to the synthesis of these substances, and this review aims to cover a literature survey of the direct selenylation of heteroarenes under metal-free conditions, which represents one of the most powerful synthetic strategies for the preparation of those target molecules. The construction of new C-Se bonds through selective C-H functionalization reactions has become useful and atom-economical. The widespread adoption of metal-free approaches has emerged as versatile, sustainable, and safe access to these organoselenium compounds. Among the features of these new protocols are the use of mild oxidants and halogen-based catalysts, inorganic bases, as well as photo-induced reactions, and electrosynthesis.

Synthesis ◽  
2017 ◽  
Vol 50 (04) ◽  
pp. 711-722 ◽  
Author(s):  
Xiaodong Jia ◽  
Pengfei Li

tert-Butyl nitrite (TBN) is an important metal-free reagent that is widely applied in various organic transformations. Besides its traditional applications in nitrosation and diazotization, its ability to activate molecular oxygen to enable the initiation of radical reactions, including nitration, oximation, oxidation, and so on, has attracted extensively attention in the past decade. This review highlights recent advances in this field to promote further exploration of this versatile compound.1 Introduction2 Reactions Involving TBN2.1 Nitrosation2.2 Oximation2.3 Diazotization2.4 Nitration2.5 Oxidation2.6 Other Reactions3 Conclusion and Perspective


2019 ◽  
Vol 43 (23) ◽  
pp. 8852-8864 ◽  
Author(s):  
Vandana Rathore ◽  
Cavya Jose ◽  
Sangit Kumar

This perspective highlights the critical analysis of the challenges, in the past decade, which led to the development of organoselenium compounds and their use as versatile catalysts in organic synthesis towards the oxidation of olefins and C–H bonds. Furthermore, the emphasis here differs from previous reviews of the field by classifying the various types of catalyses and the diverse strategies.


2021 ◽  
Vol 25 ◽  
Author(s):  
João Lucas Bruno Prates ◽  
Aline Renata Pavan ◽  
Jean Leandro dos Santos

: Nowadays, boron-containing compounds have gained researchers’ attention because of the wide versatility and applicability of this element in both organic and medicinal chemistry. Since its discovery, its use in medicinal chemistry was neglected due to its possible toxic effects. However, in the past years, boron-containing compounds did not show such effects, and some drugs have already been approved by the Food and Drug Administration to treat diseases, including cancer, infections, and inflammation. Several boron-containing compounds are used in organic and medicinal chemistry, either as a reagent or therapeutic agent. The chemical properties of this element make its use possible in organic synthesis as a reducing agent and catalyst, mainly in cross-coupling reactions. Among boron-containing compounds, boranes, azaborines, benzoxaborole, boronic acid, and boron derivatives are most commonly described. This review article discusses the main properties of boron-containing compounds, their preparation by organic synthesis, as well as their applications in organic synthesis and medicinal chemistry fields, developing new perspectives for further investigations.


Author(s):  
Yuriy Kuznetsov ◽  
Inna Levina ◽  
Igor Zavarzin

The monograph summarizes the information over the past 20 years on the currently widely used and promising methods for the synthesis of estra-1,3,5(10)-triene derivatives by modifying natural estrogens - estrone and estradiol. The main practical goals of modifying this class of steroids and achievements in the chemistry of steroidal antiestrogens, which are promising drugs for hormonal therapy, are considered. Special attention is paid to the stereochemical features of the reactions and the specific problems of modification of the steroid nucleus of estratrienes associated with the presence of an aromatic fragment in their structure. In addition, the data on the reactivity and stereochemical aspects of the transformations of 13-epiestratriene steroids were summarized. The monograph is intended for a wide range of specialists in the field of organic synthesis, organic, bioorganic, and medicinal chemistry.


Synthesis ◽  
2019 ◽  
Vol 51 (21) ◽  
pp. 4006-4013 ◽  
Author(s):  
Amanda Garrido ◽  
Pierre-Olivier Delaye ◽  
François Quintin ◽  
Mohamed Abarbri ◽  
Pedro Lameiras ◽  
...  

Benzoxazole and benzimidazole are commonly encountered heterocycles in medicinal chemistry and their functionalisation around 1-, 2-, 5-, and/or 6-positions provides a wide range of molecules of biological interest. In this manuscript, a straightforward preparation of diversely and highly substituted benzimidazoles and benzoxazoles on these positions, from a common starting material, a 3,3-dibromoacrolein, is described. Such acrolein derivatives are almost never described in the literature or used as ‘building-block’ for organic synthesis. The double electrophilicity of this substrate was found to be advantageous for condensation with two equivalents of various 1,2-diaminobenzene or 2-aminophenol derivatives. This one-pot reaction performed under metal-free and mild conditions allows the creation of three new carbon–heteroatom bonds and affords the desired heterocycles.


2019 ◽  
Author(s):  
De-Wei Gao ◽  
Yang Gao ◽  
Huiling Shao ◽  
Tian-Zhang Qiao ◽  
Xin Wang ◽  
...  

Enantioenriched <i>α</i>-aminoboronic acids play a unique role in medicinal chemistry and have emerged as privileged pharmacophores in proteasome inhibitors. Additionally, they represent synthetically useful chiral building blocks in organic synthesis. Recently, CuH-catalyzed asymmetric alkene hydrofunctionalization has become a powerful tool to construct stereogenic carbon centers. In contrast, applying CuH cascade catalysis to achieve reductive 1,1-difunctionalization of alkynes remains an important, but largely unaddressed, synthetic challenge. Herein, we report an efficient strategy to synthesize <i>α</i>-aminoboronates <i>via </i>CuH-catalyzed hydroboration/hydroamination cascade of readily available alkynes. Notably, this transformation selectively delivers the desired 1,1-heterodifunctionalized product in favor of alternative homodifunctionalized, 1,2-heterodifunctionalized, or reductively monofunctionalized byproducts, thereby offering rapid access to these privileged scaffolds with high chemo-, regio- and enantioselectivity.<br>


2019 ◽  
Author(s):  
Zhonglin Tao ◽  
Brad Gilbert ◽  
Scott Denmark

The enantioselective, vicinal diamination of alkenes represents one of the stereocontrolled additions that remains an outstanding challenge in organic synthesis. A general solution to this problem would enable the efficient and selective preparation of widely useful, enantioenriched diamines for applications in medicinal chemistry and catalysis. In this Article we describe the first enantioselective, <i>syn-</i>diamination of simple alkenes mediated by a chiral, enantioenriched organoselenium catalyst together with a <i>N,N’-</i>bistosyl urea as the bifunctional nucleophile and <i>N-</i>fluorocollidinium tetrafluoroborate as the stoichiometric oxidant. Diaryl, aryl-alkyl, and alkyl-alkyl olefins bearing a variety of substituents are all diaminated in consistently high enantioselectivities selectivities but variable yields. The reaction likely proceeds through a Se(II)/Se(IV) redox catalytic cycle reminiscent of the <i>syn-</i>dichlorination reported previously. Furthermore, the <i>syn</i>-stereospecificity of the transformation shows promise for highly enantioselective diaminations of alkenes with no strong steric or electronic bias.


2020 ◽  
Vol 24 ◽  
Author(s):  
Ghodsi Mohammadi Ziarani ◽  
Shima Roshankar ◽  
Fatemeh Mohajer ◽  
Alireza Badiei

Abstract:: Mesoporous silica nanomaterials provide an extraordinary advantage for making new and superior heterogeneous catalysts because of their surface silanol groups. The functionalized mesoporous SBA-15, such as acidic, basic, BrÖnsted, lewis acid, and chiral catalysts, are used for a wide range of organic synthesis. The importance of the chiral ligands, which were immobilized on the SBA-15, was mentioned in this review to achieve chiral products as valuable target molecules. Herein, their synthesis and application in different organic transformations are reviewed from 2016 till date 2020.


2020 ◽  
Vol 24 ◽  
Author(s):  
Bubun Banerjee ◽  
Gurpreet Kaur ◽  
Navdeep Kaur

: Metal-free organocatalysts are becoming an important tool for the sustainable developments of various bioactive heterocycles. On the other hand, during last two decades, calix[n]arenes have been gaining considerable attention due to their wide range of applicability in the field of supramolecular chemistry. Recently, sulfonic acid functionalized calix[n] arenes are being employed as an efficient alternative catalyst for the synthesis of various bioactive scaffolds. In this review we have summarized the catalytic efficiency of p-sulfonic acid calix[n]arenes for the synthesis of diverse biologically promising scaffolds under various reaction conditions. There is no such review available in the literature showing the catalytic applicability of p-sulfonic acid calix[n]arenes. Therefore, we strongly believe that this review will surely attract those researchers who are interested about this fascinating organocatalyst.


2019 ◽  
Vol 23 (11) ◽  
pp. 1214-1238 ◽  
Author(s):  
Navjeet Kaur ◽  
Pranshu Bhardwaj ◽  
Meenu Devi ◽  
Yamini Verma ◽  
Neha Ahlawat ◽  
...  

Due to special properties of ILs (Ionic Liquids) like their wide liquid range, good solvating ability, negligible vapour pressure, non-inflammability, environment friendly medium, high thermal stability, easy recycling and rate promoters etc. they are used in organic synthesis. The investigation for the replacement of organic solvents in organic synthesis is a growing area of interest due to increasing environmental issues. Therefore, ionic liquids have attracted the attention of chemists and act as a catalyst and reaction medium in organic reaction with high activity. There is no doubt that ionic liquids have become a major subject of study for modern chemistry. In comparison to traditional processes the use of ionic liquids resulted in improved, complimentary or alternative selectivities in organic synthesis. The present manuscript reported the synthesis of multiple nitrogen containing five-membered heterocyclic compounds using ionic liquids. This review covered interesting discoveries in the past few years.


Sign in / Sign up

Export Citation Format

Share Document