Progress in Molecularly Imprinted Polymers for Biomedical Applications

2019 ◽  
Vol 22 (2) ◽  
pp. 78-88 ◽  
Author(s):  
Jane Ru Choi ◽  
Kar Wey Yong ◽  
Jean Yu Choi ◽  
Alistair C. Cowie

Background: Molecularly Imprinted Polymers (MIPs), a type of biomimetic materials have attracted considerable interest owing to their cost-effectiveness, good physiochemical stability, favorable specificity and selectivity for target analytes, and long shelf life. These materials are able to mimic natural recognition entities, including biological receptors and antibodies, providing a versatile platform to achieve the desirable functionality for various biomedical applications. Objective: In this review article, we introduce the most recent development of MIPs to date. We first highlight the advantages of using MIPs for a broad range of biomedical applications. We then review their various methods of synthesis along with their latest progress in biomedical applications, including biosensing, drug delivery, cell imaging and drug discovery. Lastly, the existing challenges and future perspectives of MIPs for biomedical applications are briefly discussed. Conclusion: We envision that MIPs may be used as potential materials for diverse biomedical applications in the near future.

2008 ◽  
Vol 1138 ◽  
Author(s):  
Zhan Liu ◽  
David G. Bucknall ◽  
Mark G. Allen

AbstractThis work presents the study on the recognition and absorption of the water-soluble X-ray contrast medium iodixanol in aqueous solution using synthetic molecularly imprinted polymers (MIPs). A non-covalent imprinting technique was applied to prepare iodixanol-imprinted polymers using 4-vinylpyridine as the functional monomer and ethylene glycol dimethacrylate as the cross-linker. The effects of quantity of iodixanol templates, the crosslink density, and the solvent were studied in terms of the binding capacity and imprint effect of the polymers. UV-vis spectrometric analysis shows that the highest binding capacity achieved is 284 mg iodixanol per gram of dry polymer, which is 8.8 times higher than the binding capacity of the non-imprinted control polymers (NIPs). SEM and BET surface analysis have also been performed to investigate the effect of morphology and porosity on the binding capacities of polymers.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3256
Author(s):  
Tirza Ecclesia Orowitz ◽  
Patria Pari Agnes Ago Ana Sombo ◽  
Driyanti Rahayu ◽  
Aliya Nur Hasanah

Molecularly imprinted polymers (MIPs) are specific crosslinked polymers that exhibit binding sites for template molecules. MIPs have been developed in various application areas of biology and chemistry; however, MIPs have some problems, including an irregular material shape. In recent years, studies have been conducted to overcome this drawback, with the synthesis of uniform microsphere MIPs or molecularly imprinted microspheres (MIMs). The polymer microsphere is limited to a minimum size of 5 nm and a molecular weight of 10,000 Da. This review describes the methods used to produce MIMs, such as precipitation polymerisation, controlled/‘Living’ radical precipitation polymerisation (CRPP), Pickering emulsion polymerisation and suspension polymerisation. In addition, some green chemistry aspects and future perspectives will also be given.


Biosensors ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 44
Author(s):  
Tanja Zidarič ◽  
Matjaž Finšgar ◽  
Uroš Maver ◽  
Tina Maver

Rapid, selective, and cost-effective detection and determination of clinically relevant biomolecule analytes for a better understanding of biological and physiological functions are becoming increasingly prominent. In this regard, biosensors represent a powerful tool to meet these requirements. Recent decades have seen biosensors gaining popularity due to their ability to design sensor platforms that are selective to determine target analytes. Naturally generated receptor units have a high affinity for their targets, which provides the selectivity of a device. However, such receptors are subject to instability under harsh environmental conditions and have consequently low durability. By applying principles of supramolecular chemistry, molecularly imprinted polymers (MIPs) can successfully replace natural receptors to circumvent these shortcomings. This review summarizes the recent achievements and analytical applications of electrosynthesized MIPs, in particular, for the detection of protein-based biomarkers. The scope of this review also includes the background behind electrochemical readouts and the origin of the gate effect in MIP-based biosensors.


Biopolymers ◽  
10.5772/10278 ◽  
2010 ◽  
Author(s):  
Francesco Puoci ◽  
Giuseppe ◽  
Manuela Curcio ◽  
Francesca Iemma ◽  
Ortensia Ilaria Parisi ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6233
Author(s):  
Abbas J. Kadhem ◽  
Guillermina J. Gentile ◽  
Maria M. Fidalgo de Cortalezzi

Molecular imprinted polymers are custom made materials with specific recognition sites for a target molecule. Their specificity and the variety of materials and physical shapes in which they can be fabricated make them ideal components for sensing platforms. Despite their excellent properties, MIP-based sensors have rarely left the academic laboratory environment. This work presents a comprehensive review of recent reports in the environmental and biomedical fields, with a focus on electrochemical and optical signaling mechanisms. The discussion aims to identify knowledge gaps that hinder the translation of MIP-based technology from research laboratories to commercialization.


2011 ◽  
Vol 8 (10) ◽  
pp. 1379-1393 ◽  
Author(s):  
Francesco Puoci ◽  
Giuseppe Cirillo ◽  
Manuela Curcio ◽  
Ortensia Ilaria Parisi ◽  
Francesca Iemma ◽  
...  

The Analyst ◽  
2016 ◽  
Vol 141 (12) ◽  
pp. 3540-3553 ◽  
Author(s):  
Peilong Wang ◽  
Xiaohua Sun ◽  
Xiaoou Su ◽  
Tie Wang

Molecularly imprinted technology (MIT) has been widely employed to produce stable, robust and cheap molecularly imprinted polymer (MIP) materials that possess selective binding sites for recognition of target analytes in food, such as pesticides, veterinary drugs, mycotoxins, illegal drugs and so on.


Sign in / Sign up

Export Citation Format

Share Document