Recombinant active Peptides and their Therapeutic functions

Author(s):  
Ya’u Sabo Ajingi ◽  
Neeranuch Rukying ◽  
Aiyada Aroonsri ◽  
Nujarin Jongruja

: Recombinant active peptides are utilized as diagnostic and biotherapeutics in various maladies and as bacterial growth inhibitors in the food industry. This consequently stimulated the need for recombinant peptides' production, which resulted in about 19 approved biotech peptides of 1-100 amino acids commercially available. While most peptides have been produced by chemical synthesis, the production of lengthy and complicated peptides comprising natural amino acids has been problematic with low quantity. Recombinant peptide production has become very vital, cost-effective, simple, environmentally friendly with satisfactory yields. Several reviews have focused on discussing expression systems, advantages, disadvantages, and alternatives strategies. Additionally, the information on the antimicrobial activities and other functions of multiple recombinant peptides is challenging to access and is scattered in literature apart from the food and drug administration (FDA) approved ones. From the reports that come to our knowledge, there is no existing review that offers substantial information on recombinant active peptides developed by researchers and their functions. This review provides an overview of some successfully produced recombinant active peptides of ≤100 amino acids by focusing on their antibacterial, antifungal, antiviral, anticancer, antioxidant, antimalarial, and immune-modulatory functions. It also elucidates their modes of expression that could be adopted and applied in future investigations. We expect that the knowledge available in this review would help researchers involved in recombinant active peptide development for therapeutic uses and other applications.

Biomolecules ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 118 ◽  
Author(s):  
Mercedeh Tajbakhsh ◽  
Maziar Akhavan ◽  
Fatemeh Fallah ◽  
Abdollah Karimi

The emergence of antimicrobial resistance among pathogenic microorganisms has been led to an urgent need for antibiotic alternatives. Antimicrobial peptides (AMPs) have been introduced as promising therapeutic agents because of their remarkable potentials. A new modified cathelicidin-BF peptide (Cath-A) with 34 amino acid sequences, represents the potential antimicrobial effects against methicillin-resistant Staphylococcus aureus (MRSA) with slight hemolytic and cytotoxic activities on eukaryotic cells. In this study, the effects of Cath-A on Acinetobacter baumannii, and Pseudomonas aeruginosa isolated from medical instruments were studied. Cath-A inhibited the growth of bacterial cells in the range of 8–16 μg/mL and 16-≥256 μg/mL for A. baumannii and P. aeruginosa, respectively. The peptide significantly removed the established biofilms. To display a representative approach for the cost-effective constructions of peptides, the recombinant Cath-A was cloned in the expression vector pET-32a(+) and transformed to Escherichia coli BL21. The peptide was expressed with a thioredoxin (Trx) sequence in optimum conditions. The recombinant peptide was purified with a Ni2+ affinity chromatography and the mature peptide was released after removing the Trx fusion protein with enterokinase. The final concentration of the partially purified peptide was 17.6 mg/L of a bacterial culture which exhibited antimicrobial activities. The current expression and purification method displayed a fast and effective system to finally produce active Cath-A for further in-vitro study usage.


1982 ◽  
Vol 47 (1) ◽  
pp. 210-216 ◽  
Author(s):  
Milan Strašák ◽  
František Bachratý ◽  
Jaroslav Majer

The synthesis and physico-chemical parameters are described of a new complexone based on natural amino acids, viz. ethylenediamine-N,N'-di-S-α-isovalerate (SS-EDDIV). 1H- and 13C-NMR data revealed that the methyl group in the substance are not equivalent. The isomers of the cobalt(III) complex with the asymmetric tetradentate SS-EDDIV ligand were prepared and separated; their characteristics are given. The absolute configuration of two of the five theoretically feasible isomers was determined based on their electronic absorption spectra and circular dichroism data.


Author(s):  
Viruja Ummat ◽  
Marco Garcia-Vaquero ◽  
Mahesha M. Poojary ◽  
Marianne N. Lund ◽  
Colm O’Donnell ◽  
...  

AbstractSeaweeds are a valuable potential source of protein, as well as free amino acids (FAAs) with umami flavour which are in high demand by the food industry. The most commonly used flavouring agents in the food industry are chemically synthesised and therefore are subject to concerns regarding their safety and associated consumer resistance. This study focuses on the effects of extraction time (1 and 2 h) and solvents (0.1 M HCl, 1% citric acid and deionised water) on the extraction of protein and FAAs including umami FAAs from Irish brown seaweeds (Ascophyllum nodosum and Fucus vesiculosus). Extraction yields were influenced by both the extraction solvent and time, and also varied according to the seaweed used. Both seaweeds investigated were found to be good sources of protein, FAAs including umami FAAs, demonstrating potential application as flavouring agents in the food industry. Overall, the use of green solvents (deionised water and citric acid) resulted in higher recoveries of compounds compared to HCl. The results of this study will facilitate the use of more sustainable solvents in industry for the extraction of proteins and flavouring agents from seaweed.


Author(s):  
Elham R. S. Soliman ◽  
Heba El-Sayed

Abstract Background The discovery of potential, new cost-effective drug resources in the form of bioactive compounds from mushrooms is one way to control the resistant pathogens. In the present research, the fruiting bodies of five wild mushrooms were collected from Egypt and identified using internal transcribed spacer region (ITS) of the rRNA encoding gene and their phylogenetic relationships, antimicrobial activities, and biochemical and phenolic compounds were evaluated. Results The sequences revealed identity to Bjerkandera adusta, Cyclocybe cylindracea, Agrocybe aegerita, Chlorophyllum molybdites, and Lentinus squarrosulus in which Cyclocybe cylindracea and Agrocybe aegerita were closely related, while Chlorophyllum molybdites was far distant. Cyclocybe cylindracea and Agrocybe aegerita showed 100% similarity based on the sequenced ITS-rDNA fragment and dissimilar antimicrobial activities and chemical composition were detected. Bjerkandera adusta and Cyclocybe cylindracea showed strong antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Micrococcus luteus, Streptococcus pneumoniae, and Candida albicans. This activity could be attributed to the detected phenolic and related compounds’ contents. Conclusion Our finding provides a quick and robust implement for mushroom identification that would facilitate mushroom domestication and characterization for human benefit.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2940
Author(s):  
Antonella Curulli

Safety and quality are key issues for the food industry. Consequently, there is growing demand to preserve the food chain and products against substances toxic, harmful to human health, such as contaminants, allergens, toxins, or pathogens. For this reason, it is mandatory to develop highly sensitive, reliable, rapid, and cost-effective sensing systems/devices, such as electrochemical sensors/biosensors. Generally, conventional techniques are limited by long analyses, expensive and complex procedures, and skilled personnel. Therefore, developing performant electrochemical biosensors can significantly support the screening of food chains and products. Here, we report some of the recent developments in this area and analyze the contributions produced by electrochemical biosensors in food screening and their challenges.


2021 ◽  
Vol 14 (5) ◽  
pp. 414
Author(s):  
Neda Aničić ◽  
Uroš Gašić ◽  
Feng Lu ◽  
Ana Ćirić ◽  
Marija Ivanov ◽  
...  

Two Balkan Peninsula endemics, Nepeta rtanjensis and N. argolica subsp. argolica, both characterized by specialized metabolite profiles predominated by iridoids and phenolics, are differentiated according to the stereochemistry of major iridoid aglycone nepetalactone (NL). For the first time, the present study provides a comparative analysis of antimicrobial and immunomodulating activities of the two Nepeta species and their major iridoids isolated from natural sources—cis,trans-NL, trans,cis-NL, and 1,5,9-epideoxyloganic acid (1,5,9-eDLA), as well as of phenolic acid rosmarinic acid (RA). Methanol extracts and pure iridoids displayed excellent antimicrobial activity against eight strains of bacteria and seven strains of fungi. They were especially potent against food-borne pathogens such as L. monocytogenes, E. coli, S. aureus, Penicillium sp., and Aspergillus sp. Targeted iridoids were efficient agents in preventing biofilm formation of resistant P. aeruginosa strain, and they displayed additive antimicrobial interaction. Iridoids are, to a great extent, responsible for the prominent antimicrobial activities of the two Nepeta species, although are probably minor contributors to the moderate immunomodulatory effects. The analyzed iridoids and RA, individually or in mixtures, have the potential to be used in the pharmaceutical industry as potent antimicrobials, and in the food industry to increase the shelf life and safety of food products.


Sign in / Sign up

Export Citation Format

Share Document