scholarly journals Antimicrobial and Immunomodulating Activities of Two Endemic Nepeta Species and Their Major Iridoids Isolated from Natural Sources

2021 ◽  
Vol 14 (5) ◽  
pp. 414
Author(s):  
Neda Aničić ◽  
Uroš Gašić ◽  
Feng Lu ◽  
Ana Ćirić ◽  
Marija Ivanov ◽  
...  

Two Balkan Peninsula endemics, Nepeta rtanjensis and N. argolica subsp. argolica, both characterized by specialized metabolite profiles predominated by iridoids and phenolics, are differentiated according to the stereochemistry of major iridoid aglycone nepetalactone (NL). For the first time, the present study provides a comparative analysis of antimicrobial and immunomodulating activities of the two Nepeta species and their major iridoids isolated from natural sources—cis,trans-NL, trans,cis-NL, and 1,5,9-epideoxyloganic acid (1,5,9-eDLA), as well as of phenolic acid rosmarinic acid (RA). Methanol extracts and pure iridoids displayed excellent antimicrobial activity against eight strains of bacteria and seven strains of fungi. They were especially potent against food-borne pathogens such as L. monocytogenes, E. coli, S. aureus, Penicillium sp., and Aspergillus sp. Targeted iridoids were efficient agents in preventing biofilm formation of resistant P. aeruginosa strain, and they displayed additive antimicrobial interaction. Iridoids are, to a great extent, responsible for the prominent antimicrobial activities of the two Nepeta species, although are probably minor contributors to the moderate immunomodulatory effects. The analyzed iridoids and RA, individually or in mixtures, have the potential to be used in the pharmaceutical industry as potent antimicrobials, and in the food industry to increase the shelf life and safety of food products.

2008 ◽  
Vol 71 (7) ◽  
pp. 1401-1405 ◽  
Author(s):  
JEREMY A. OBRITSCH ◽  
DOJIN RYU ◽  
LUCINA E. LAMPILA ◽  
LLOYD B. BULLERMAN

The antimicrobial activities of four long-chain food-grade polyphosphates were studied at concentrations allowed in the food industry (<5,000 ppm) in defined basal media by determining the inhibition of growth of three gram-negative and four gram-positive spoilage and pathogenic bacteria. Both generation time and lag phase of Escherichia coli K-12, E. coli O157: H7, and Salmonella Typhimurium were increased with all of the polyphosphates tested. Bacillus subtilis and Staphylococcus aureus were more sensitive to polyphosphates, but not in all cases, with multiphased growth. The growth of Lactobacillus plantarum was inhibited by polyphosphates at concentrations above 750 ppm, but the lag time of Listeria monocytogenes was shortened by the presence of polyphosphates. No single polyphosphate was maximally inhibitory against all bacteria. Polyphosphates with chain lengths of 12 to 15 were significantly different from those with chain lengths of 18 to 21 depending on the organism and concentrations of polyphosphate used. Overall, higher polyphosphate concentrations resulted in greater inhibition of bacterial growth.


2018 ◽  
Vol 13 (4) ◽  
pp. 1934578X1801300 ◽  
Author(s):  
Ngonye Keroletswe ◽  
Runner R. T. Majinda ◽  
Ishmael B. Masesane

One new 3-prenyl-2-flavene, named baphiflavene A, 1, and eleven known compounds, 2-12, were isolated and reported for the first time from Baphia massaiensis using several chromatographic techniques. Their structures were elucidated using different spectroscopic techniques; 1D and 2D-NMR, HRMS, GC-MS, UV/Vis, FTIR and by comparison with literature data. The isolates were tested against Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli and Candida albicans to establish their preliminary antimicrobial activities. The results revealed that compound 1 had moderate activities against both Gram positive ( B. subtilis and S. aureus) and Gram negative ( E. coli and P. aeruginosa) bacteria, and good activity against C. albicans with inhibition zones of 10–23 mm (compared to 19 mm for chloramphenicol and miconazole standards). To the best of our knowledge, this is the first phytochemical work reported on Baphia massaiensis.


2020 ◽  
Vol 8 (4) ◽  
pp. 553
Author(s):  
Jana Przekwas ◽  
Natalia Wiktorczyk ◽  
Anna Budzyńska ◽  
Ewa Wałecka-Zacharska ◽  
Eugenia Gospodarek-Komkowska

Since bacterial biofilm may contribute to the secondary contamination of food during the manufacturing/processing stage there is a need for new methods allowing its effective eradication. Application of food additives such as vitamin C already used in food industry as antioxidant food industry antioxidants may be a promising solution. The aim of this research was evaluation of the impact of vitamin C (ascorbic acid), in a range of concentrations 2.50 µg mL−1–25.0 mg mL−1, on biofilms of Staphylococcus aureus, Escherichia coli, and Listeria monocytogenes strains isolated from food. The efficacy of ascorbic acid was assessed based on the reduction of optical density (λ = 595 nm). The greatest elimination of the biofilm was achieved at the concentration of vitamin C of 25.0 mg mL−1. The effect of the vitamin C on biofilm, however, was strain dependent. The concentration of 25.0 mg mL−1 reduced 93.4%, 74.9%, and 40.5% of E. coli, L. monocytogenes, and S. aureus number, respectively. For E. coli and S. aureus lower concentrations were ineffective. In turn, for L. monocytogenes the biofilm inhibition was observed even at the concentration of 0.25 mg mL−1. The addition of vitamin C may be helpful in the elimination of bacterial biofilms. Nonetheless, some concentrations can induce growth of the pathogens, posing risk for the consumers’ health.


2010 ◽  
Vol 76 (6) ◽  
pp. 1967-1974 ◽  
Author(s):  
Shuyu Hou ◽  
Zhigang Liu ◽  
Anne W. Young ◽  
Sheron L. Mark ◽  
Neville R. Kallenbach ◽  
...  

ABSTRACT Biofilms are sessile microbial communities that cause serious chronic infections with high morbidity and mortality. In order to develop more effective approaches for biofilm control, a series of linear cationic antimicrobial peptides (AMPs) with various arginine (Arg or R) and tryptophan (Trp or W) repeats [(RW) n -NH2, where n = 2, 3, or 4] were rigorously compared to correlate their structures with antimicrobial activities affecting the planktonic growth and biofilm formation of Escherichia coli. The chain length of AMPs appears to be important for inhibition of bacterial planktonic growth, since the hexameric and octameric peptides significantly inhibited E. coli growth, while tetrameric peptide did not cause noticeable inhibition. In addition, all AMPs except the tetrameric peptide significantly reduced E. coli biofilm surface coverage and the viability of biofilm cells, when added at inoculation. In addition to inhibition of biofilm formation, significant killing of biofilm cells was observed after a 3-hour treatment of preformed biofilms with hexameric peptide. Interestingly, treatment with the octameric peptide caused significant biofilm dispersion without apparent killing of biofilm cells that remained on the surface; e.g., the surface coverage was reduced by 91.5 ± 3.5% by 200 μM octameric peptide. The detached biofilm cells, however, were effectively killed by this peptide. Overall, these results suggest that hexameric and octameric peptides are potent inhibitors of both bacterial planktonic growth and biofilm formation, while the octameric peptide can also disperse existing biofilms and kill the detached cells. These results are helpful for designing novel biofilm inhibitors and developing more effective therapeutic methods.


2021 ◽  
Vol 4 (2) ◽  
pp. 166
Author(s):  
Ndaindila Haindongo ◽  
Amara Anyogu ◽  
Osmond Ekwebelem ◽  
Christian Anumudu ◽  
Helen Onyeaka

Biofilms are a significant concern in the food industry because of their potential to enhance bacterial survival and cause foodborne outbreaks. Escherichia coli (E. coli) is among the leading pathogens responsible for foodborne outbreaks and this can be attributed to its ability to form biofilms in food containers and food preparatory surfaces. The purpose of this study was to investigate the antibacterial and antibiofilm properties of garlic, ginger and mint and their potential to inhibit E.coli and biofilm formation. Disc diffusion assays and 96-well plate crystal violet-based methods were used to achieve these objectives. The plant extracts were diluted from 1 mg/ml to 0.1 mg/ml and incubated 25°C and 37°C to investigate the antimicrobial and antibiofilm effects on E. coli. The findings of this study showed that low temperatures induced the formation of E. coli biofilms and all tested extracts contain a broad spectrum of antibacterial and antibiofilm properties. This study provided new insights on the combined antimicrobial and antibiofilm properties of garlic, ginger and mint against planktonic cells and biofilms of E. coli MG 1655 and highlight the potential use of these extracts in the food industry to prevent biofilm formation by E. coli. 


2019 ◽  
Vol 12 (4) ◽  
pp. 186 ◽  
Author(s):  
Raffaella Campana ◽  
Alessio Merli ◽  
Michele Verboni ◽  
Francesca Biondo ◽  
Gianfranco Favi ◽  
...  

A small library of sugar-based (i.e., glucose, mannose and lactose) monoesters containing hydrophobic aliphatic or aromatic tails were synthesized and tested. The antimicrobial activity of the compounds against a target panel of Gram-positive, Gram-negative and fungi was assessed. Based on this preliminary screening, the antibiofilm activity of the most promising molecules was evaluated at different development times of selected food-borne pathogens (E. coli, L. monocytogenes, S. aureus, S. enteritidis). The antibiofilm activity during biofilm formation resulted in the following: mannose C10 > lactose biphenylacetate > glucose C10 > lactose C10. Among them, mannose C10 and lactose biphenylacetate showed an inhibition for E. coli 97% and 92%, respectively. At MICs values, no toxicity was observed on Caco-2 cell line for all the examined compounds. Overall, based on these results, all the sugar-based monoesters showed an interesting profile as safe antimicrobial agents. In particular, mannose C10 and lactose biphenylacetate are the most promising as possible biocompatible and safe preservatives for pharmaceutical and food applications.


2019 ◽  
Vol 57 (3B) ◽  
pp. 127 ◽  
Author(s):  
Cung Thi To Quynh ◽  
Vu Thu Trang

The essential oil (EO) obtained from the leaves of the thyme (Thymus vulgaris L.) grown in Vietnam was found to contain thymol (39.79%), cymene (17.33%), and γ-terpinene (13.45%) as the main volatile components. The antimicrobial activities of this oil were screened against several food-borne bacteria and fungi species. Significant growth inhibition effects against food-borne bacteria Escherichia coli, Staphylococcus aureus, Bacillus cereus, and Salmonella Typhimurium were observed using the standard disc diffusion method. Thyme EO showed the antibacterial effect against all the test pathogenic strains with the inhibition zones were 23.3 ± 0.4 mm, 24.7 ± 0.4 mm, 29.0 ± 0.7 mm, 32 ± 0.7 mm in diameter against B. subtilis,  E. coli, S. Typhimurium and S. aureus, respectively. The minimum inhibitory concentration (MIC) determined by micro-dilution method in MHB liquid medium was 1.56 µl/ml. The bactericidal concentrations (MBC) was 3.13 µl/ml for three isolates from B. subtilis,  E. coli, and S. aureus, while the MBC tested for S. typhi was 1.56 µl/ml. The antifungal properties of the thyme EO were also determined in this study against three important pathogenic fungi such as Candida albicans, Rhizoctonia solani and Fusarium oxysporum with the inhibition zones ranging approximately from 23.20 ± 0.06 to 44.10 ± 0.03 mm. On the other hands, the results also showed the antioxidant activity of Vietnamese thyme EO and suggested that thyme EO can be applied in food industries as natural flavoring preservatives/additives to control food spoilage and food born bacteria and fungi.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Bo Hou ◽  
Xian-Rong Meng ◽  
Li-Yuan Zhang ◽  
Chen Tan ◽  
Hui Jin ◽  
...  

While a high osmolarity medium activates Cpx signaling and causes CpxR to represscsgDexpression, and efflux protein TolC protein plays an important role in biofilm formation inEscherichia coli,whether TolC also responds to an osmolarity change to regulate biofilm formation in extraintestinal pathogenicE. coli(ExPEC) remains unknown. In this study, we constructedΔtolCmutant and complement ExPEC strains to investigate the role of TolC in the retention of biofilm formation and curli production capability under different osmotic conditions. TheΔtolCmutant showed significantly decreased biofilm formation and lost the ability to produce curli fimbriae compared to its parent ExPEC strain PPECC42 when cultured in M9 medium or 1/2 M9 medium of increased osmolarity with NaCl or sucrose at 28°C. However, biofilm formation and curli production levels were restored to wild-type levels in theΔtolCmutant in 1/2 M9 medium. We propose for the first time that TolC protein is able to form biofilm even under high osmotic stress. Our findings reveal an interplay between the role of TolC in ExPEC biofilm formation and the osmolarity of the surrounding environment, thus providing guidance for the development of a treatment for ExPEC biofilm formation.


2019 ◽  
Vol 8 (12) ◽  
pp. 2118
Author(s):  
Ángel Rodríguez-Villodres ◽  
Rémy A. Bonnin ◽  
José Manuel Ortiz de la Rosa ◽  
Rocío Álvarez-Marín ◽  
Thierry Naas ◽  
...  

Escherichia coli is the most frequent Gram-negative bacilli involved in intra-abdominal infections. However, despite high mortality rates associated with biliary tract infections due to E. coli, there is no study focusing on this pathogen. In this study, we have characterized a group of 15 E. coli isolates obtained from 12 patients with biliary tract infections. Demographic and clinical data of the patients were recovered. Phylogeny, resistome, and virulome analysis through whole genome sequencing and biofilm formation were investigated. Among the 15 E. coli isolates, no predominant sequence type (ST) was identified, although 3 of them belonged to unknown STs (20%). Resistance to ampicillin, amoxicillin/clavulanic acid, cotrimoxazole, and quinolones was more present in these isolates; whereas, third and fourth generation cephalosporins, carbapenems, amikacin, tigecycline, and colistin were highly active. Moreover, high diversity of virulence factors has been found, with sfa, fimH, and gad the most frequently detected genes. Interestingly, 26.6% of the E. coli isolates were high biofilm-producers. Altogether, our data characterized for the first time E. coli isolates associated with biliary tract infections in terms of genomic relationship, resistome, and virulome.


Author(s):  
Kim Stanford ◽  
Frances Tran ◽  
Peipei Zhang ◽  
Xianqin Yang

Despite the importance of biofilm formation in contamination of meat by pathogenic Escherichia coli at slaughter plants, drivers for biofilm remain unclear. To identify selection pressures for biofilm, we evaluated 745 isolates from cattle and 700 generic E. coli from two beef slaughter plants for motility, expression of curli and cellulose, and biofilm-forming potential. Cattle isolates were also screened for serogroup, stx1 , stx2 , eae and rpoS. Generic E. coli were compared by source (hide of carcass, hide-off carcass, processing equipment) before and after implementation of antimicrobial hurdles. The proportion of E. coli capable of forming biofilms was lowest (7.1%; P < 0.05) for cattle isolates and highest (87.3%; P < 0.05) from equipment. Only one enterohemorrhagic E. coli (EHEC) was an extremely-strong biofilm-former, in contrast to 73.4% of E. coli from equipment. Isolates from equipment after sanitation had a greater biofilm-forming capacity ( P < 0.001) than those before sanitation. Most cattle isolates were motile and expressed curli, although these traits along with expression of cellulose and detection of rpoS were not necessary for biofilm formation. In contrast, isolates capable of forming biofilms on equipment were almost exclusively motile and able to express curli. Results of the present study indicate that cattle would rarely carry EHEC capable of making strong biofilms to slaughter plants. However, if biofilm-forming EHEC contaminated equipment, current sanitation procedures may not eliminate the most robust biofilm-forming strains. Accordingly, new and effective anti-biofilm hurdles are required for meat-processing equipment to reduce future instances of food-borne disease. Importance As the majority of enterohemorrhagic E. coli (EHEC) are not capable of forming biofilms, sources were undetermined of the biofilm-forming EHEC isolated from ‘high-event periods’ in beef slaughter plants. This study demonstrated that sanitation procedures used on beef-processing equipment may inadvertently lead to survival of robust biofilm-forming strains of E. coli . Cattle only rarely carry EHEC capable of forming strong biofilms (1/745 isolates evaluated), but isolates with greater biofilm-forming capacity were more likely ( P < 0.001) to survive equipment sanitation. In contrast, chilling carcasses for 3 days at 0°C reduced ( P < 0.05) the proportion of biofilm-forming E. coli . Consequently, an additional anti-biofilm hurdle for meat-processing equipment, perhaps involving cold exposure, is necessary to further reduce the risk of food-borne disease.


Sign in / Sign up

Export Citation Format

Share Document