Sulfated extract of Abelmoschus esculentus: A potential cancer chemopreventive agent

Author(s):  
Amira M. Gamal-Eldeen ◽  
Hassan Amer ◽  
Cinderella A. Fahmy ◽  
Haytham Dahlawi ◽  
Asma Salman ◽  
...  

Background: Abelmoschus esculentus (AE) (okra), is an edible plant used in many food applications. Objective: This study explored whether sulfated AE (SAE) has promising cancer chemopreventive activities that may recommend it as a functional food supplement ‎instead of (or in addition to) AE for the population at risk of cancer and in the health food industry.‎ Methods: Cytochrome P450-1A (CYP1A)‎ was estimated by fluorescence enzymatic reaction, using β-naphthoflavone-treated cells (CYP1A inducer). Peroxyl and hydroxyl radical scavenging was assayed by an oxygen radical absorbance capacity assay. Flow cytometry was used to analyze apoptosis/necrosis in MCF-7 cells, cell cycle phases in MCF-7 cells, and macrophage binding to fluorescein isothiocyanate-lipopolysaccharide (FITC-LPS)‎. Nitric oxide was determined by Griess assay in LPS-stimulated macrophages, and cytotoxicity was determined by MTT assay. Diethylnitrosamine (DEN) was used to induce hepatic tumor initiation in rats. Placental glutathione-S-transferase (GSTP; an initiation marker) was stained in a fluorescence immunohistochemical analysis of liver sections, and histopathological changes were examined. Results: SAE exhibited strong antitumor initiation and antitumor promotion activities. It suppressed CYP1A, ‎scavenged peroxyl and hydroxyl radicals, induced macrophage proliferation, suppressed ‎macrophage binding to FITC-LPS, inhibited nitric oxide generation, showed specific cytotoxicity to ‎human breast MCF-7 adenocarcinoma cells, and disturbed the cell cycle phases (S and G2/M phases) ‎in association with an increased percentage of apoptotic/necrotic MCF-7 cells. Over a short time period, DEN stimulated liver cancer initiation, but SAE treatment reduced the DEN-induced histopathological alterations and ‎inhibited CYP1A and GSTP.‎ Conclusion: SAE extract has the potential for use as an alternative to AE in health foods to provide cancer chemoprevention in populations at risk for cancer.

2006 ◽  
Vol 84 (5) ◽  
pp. 737-744 ◽  
Author(s):  
Weiyang Lin ◽  
Gilbert Arthur

The catabolism of phosphatidylcholine (PtdCho) appears to play a key role in regulating the net accumulation of the lipid in the cell cycle. Current protocols for measuring the degradation of PtdCho at specific cell-cycle phases require prolonged periods of incubation with radiolabelled choline. To measure the degradation of PtdCho at the S and G2 phases in the MCF-7 cell cycle, protocols were developed with radiolabelled lysophosphatidylcholine (lysoPtdCho), which reduces the labelling period and minimizes the recycling of labelled components. Although most of the incubated lysoPtdCho was hydrolyzed to glycerophosphocholine (GroPCho) in the medium, the kinetics of the incorporation of label into PtdCho suggests that the labelled GroPCho did not contribute significantly to cellular PtdCho formation. A protocol which involved exposing the cells twice to hydroxyurea, was also developed to produce highly synchronized MCF-7 cells with a profile of G1:S:G2/M of 90:5:5. An analysis of PtdCho catabolism in the synchronized cells following labelling with lysoPtdCho revealed that there was increased degradation of PtdCho in early to mid-S phase, which was attenuated in the G2/M phase. The results suggest that the net accumulation of PtdCho in MCF-7 cells may occur in the G2 phase of the cell cycle.


2001 ◽  
Vol 281 (3) ◽  
pp. 766-771 ◽  
Author(s):  
Laurence Chazotte-Aubert ◽  
Olivier Pluquet ◽  
Pierre Hainaut ◽  
Hiroshi Ohshima

Neurographics ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 228-235
Author(s):  
S. Naganawa ◽  
T. Donohue ◽  
A. Capizzano ◽  
Y. Ota ◽  
J. Kim ◽  
...  

Li-Fraumeni syndrome is a familial cancer predisposition syndrome associated with germline mutation of the tumor suppressor gene 53, which encodes the tumor suppressor p53 protein. Affected patients are predisposed to an increased risk of cancer development, including soft-tissue sarcomas, breast cancer, brain tumors, and adrenocortical carcinoma, among other malignancies. The tumor suppressor gene TP53 plays an important, complex role in regulating the cell cycle, collaborating with transcription factors and other proteins. The disruption of appropriate cell cycle regulation by mutated TP53 is considered to be the cause of tumorigenesis in Li-Fraumeni syndrome. Appropriate surveillance, predominantly by using MR imaging, is used for early malignancy screening in an effort to improve the survival rate among individuals who are affected. Patients with Li-Fraumeni syndrome are also at increased risk for neoplasm development after radiation exposure, and, therefore, avoiding unnecessary radiation in both the diagnostic and therapeutic settings is paramount. Here, we review the epidemiology, genetics, imaging findings, and the current standard surveillance protocol for Li-Fraumeni syndrome from the National Comprehensive Cancer Network as well as potential treatment options.Learning Objective: Describe the cause of second primary malignancy among patients with Li-Fraumeni syndrome.


2020 ◽  
Vol 16 (3) ◽  
pp. 340-349
Author(s):  
Ebrahim S. Moghadam ◽  
Farhad Saravani ◽  
Ernest Hamel ◽  
Zahra Shahsavari ◽  
Mohsen Alipour ◽  
...  

Objective: Several anti-tubulin agents were introduced for the cancer treatment so far. Despite successes in the treatment of cancer, these agents cause toxic side effects, including peripheral neuropathy. Comparing anti-tubulin agents, indibulin seemed to cause minimal peripheral neuropathy, but its poor aqueous solubility and other potential clinical problems have led to its remaining in a preclinical stage. Methods: Herein, indibulin analogues were synthesized and evaluated for their in vitro anti-cancer activity using MTT assay (on the MCF-7, T47-D, MDA-MB231 and NIH-3T3 cell lines), annexin V/PI staining assay, cell cycle analysis, anti-tubulin assay and caspase 3/7 activation assay. Results: One of the compounds, 4a, showed good anti-proliferative activity against MCF-7 cells (IC50: 7.5 μM) and low toxicity on a normal cell line (IC50 > 100 μM). All of the tested compounds showed lower cytotoxicity on normal cell line in comparison to reference compound, indibulin. In the annexin V/PI staining assay, induction of apoptosis in the MCF-7 cell line was observed. Cell cycle analysis illustrated an increasing proportion of cells in the sub-G-1 phase, consistent with an increasing proportion of apoptotic cells. No increase in G2/M cells was observed, consistent with the absence of anti-tubulin activity. A caspase 3/7 assay protocol showed that apoptosis induction by more potent compounds was due to activation of caspase 3. Conclusion: Newly synthesized compounds exerted acceptable anticancer activity and further investigation of current scaffold would be beneficial.


2020 ◽  
Vol 19 (16) ◽  
pp. 2010-2018
Author(s):  
Youstina W. Rizzk ◽  
Ibrahim M. El-Deen ◽  
Faten Z. Mohammed ◽  
Moustafa S. Abdelhamid ◽  
Amgad I.M. Khedr

Background: Hybrid molecules furnished by merging two or more pharmacophores is an emerging concept in the field of medicinal chemistry and drug discovery. Currently, coumarin hybrids have attracted the keen attention of researchers to discover their therapeutic capability against cancer. Objective: The present study aimed to evaluate the in vitro antitumor activity of a new series of hybrid molecules containing coumarin and quinolinone moieties 4 and 5 against four cancer cell lines. Materials and Methods: A new series of hybrid molecules containing coumarin and quinolinone moieties, 4a-c and 5a-c, were synthesized and screened for their cytotoxicity against prostate PC-3, breast MCF-7, colon HCT- 116 and liver HepG2 cancer cell lines as well as normal breast Hs-371 T. Results: All the synthesized compounds were assessed for their in vitro antiproliferative activity against four cancer cell lines and several compounds were found to be active. Further in vitro cell cycle study of compounds 4a and 5a revealed MCF-7 cells arrest at G2 /M phase of the cell cycle profile and induction apoptosis at pre-G1 phase. The apoptosis-inducing activity was evidenced by up-regulation of Bax protein together with the downregulation of the expression of Bcl-2 protein. The mechanism of cytotoxic activity of compounds 4a and 5a correlated to its topoisomerase II inhibitory activity. Conclusion: Hybrid molecules containing coumarin and quinolinone moieties represents a scaffold for further optimization to obtain promising anticancer agents.


Sign in / Sign up

Export Citation Format

Share Document