Antimicrobial peptides with pH dependent activity and alkaline optima: their origins, mechanisms of action and potential applications

Author(s):  
David A. Phoenix ◽  
Frederick Harris ◽  
Sarah R. Dennison

: A number of disorders and diseases are associated with conditions of high pH and many conventional antibiotics lose their efficacy under these pH conditions, generating a need for novel antimicrobials, and a potential solution to fulfil this need is antimicrobial peptides (AMPs) with high pH optima. This review shows that a variety of anionic and cationic AMPs with this pH dependency are produced by creatures across the eukaryotic kingdom, including humans, rabbits, cattle, sheep, fish and frogs. These AMPs exhibit activity against viruses, bacteria and fungi that involves membrane interactions and appear to be facilitated by a variety of mechanisms that generally promote passage across membranes to attack intracellular targets, such as DNA or protein synthesis, and / or membrane lysis. Some of these mechanisms are unknown but those elucidated include the use of bacterial pores and transporters, the self-promoted uptake pathway and established models of membrane interaction, such as the carpet mechanism, toroidal pore formation, the adoption of tilted peptide and the SHM model. A variety of potential roles have been proposed for these AMPs, including use as antivirals, antibacterials, antifungals, adjuvants to antimicrobial therapy, biomarkers of disease and probes for pathogenic microbes. In this review, these properties are described and discussed, with an emphasis on the antimicrobial mechanisms used by these AMPs and the pH dependency of these mechanisms.

2021 ◽  
Vol 62 (1) ◽  
Author(s):  
Junpeng Li ◽  
Shuping Hu ◽  
Wei Jian ◽  
Chengjian Xie ◽  
Xingyong Yang

AbstractAntimicrobial peptides (AMPs) are a class of short, usually positively charged polypeptides that exist in humans, animals, and plants. Considering the increasing number of drug-resistant pathogens, the antimicrobial activity of AMPs has attracted much attention. AMPs with broad-spectrum antimicrobial activity against many gram-positive bacteria, gram-negative bacteria, and fungi are an important defensive barrier against pathogens for many organisms. With continuing research, many other physiological functions of plant AMPs have been found in addition to their antimicrobial roles, such as regulating plant growth and development and treating many diseases with high efficacy. The potential applicability of plant AMPs in agricultural production, as food additives and disease treatments, has garnered much interest. This review focuses on the types of plant AMPs, their mechanisms of action, the parameters affecting the antimicrobial activities of AMPs, and their potential applications in agricultural production, the food industry, breeding industry, and medical field.


Toxins ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 461 ◽  
Author(s):  
Qinghua Wu ◽  
Jiří Patočka ◽  
Kamil Kuča

Antimicrobial peptides (AMPs) are crucial effectors of the innate immune system. They provide the first line of defense against a variety of pathogens. AMPs display synergistic effects with conventional antibiotics, and thus present the potential for combined therapies. Insects are extremely resistant to bacterial infections. Insect AMPs are cationic and comprise less than 100 amino acids. These insect peptides exhibit an antimicrobial effect by disrupting the microbial membrane and do not easily allow microbes to develop drug resistance. Currently, membrane mechanisms underlying the antimicrobial effects of AMPs are proposed by different modes: the barrel-stave mode, toroidal-pore, carpet, and disordered toroidal-pore are the typical modes. Positive charge quantity, hydrophobic property and the secondary structure of the peptide are important for the antibacterial activity of AMPs. At present, several structural families of AMPs from insects are known (defensins, cecropins, drosocins, attacins, diptericins, ponericins, metchnikowins, and melittin), but new AMPs are frequently discovered. We reviewed the biological effects of the major insect AMPs. This review will provide further information that facilitates the study of insect AMPs and shed some light on novel microbicides.


2018 ◽  
Vol 25 (21) ◽  
pp. 2503-2519 ◽  
Author(s):  
Anne Kokel ◽  
Marianna Torok

Background: Since the first isolation of antimicrobial peptides (AMPs) they have attracted extensive interest in medicinal chemistry. However, only a few AMP-based drugs are currently available on the market. Despite their effectiveness, biodegradability, and versatile mode of action that is less likely to induce resistance compared to conventional antibiotics, AMPs suffer from major issues that need to be addressed to broaden their use. Notably, AMPs can lack selectivity leading to side effects and cytotoxicity, and also exhibit in vivo instability. Several strategies are being actively considered to overcome the limitations that restrain the success of AMPs. Methods: In the current work, recent strategies reported for improving AMPs in the context of drug design and delivery were surveyed, and also their possible impact on patients and the environment was assessed. Results: As a major advantage AMPs possess an easily tunable skeleton offering opportunities to improve their properties. Strategic structural modifications and the beneficial properties of cyclic or branched AMPs in term of stability have been reported. The conjugation of AMPs with nanoparticles has also been explored to increase their in vivo stability. Other techniques such as the coupling of AMPs with specific antibodies aim to increase the selectivity of the potential drug towards the target. These strategies were evaluated for their effect on the environment highlighting green technologies. Conclusion: Although further research is needed taking into account both environmental and human health consequences of novel AMPs, several of these compounds are promising drug candidates for use in sustainable medicine.


2020 ◽  
Vol 20 (14) ◽  
pp. 1264-1273 ◽  
Author(s):  
Bruno Casciaro ◽  
Floriana Cappiello ◽  
Walter Verrusio ◽  
Mauro Cacciafesta ◽  
Maria Luisa Mangoni

The frequent occurrence of multidrug-resistant strains to conventional antimicrobials has led to a clear decline in antibiotic therapies. Therefore, new molecules with different mechanisms of action are extremely necessary. Due to their unique properties, antimicrobial peptides (AMPs) represent a valid alternative to conventional antibiotics and many of them have been characterized for their activity and cytotoxicity. However, the effects that these peptides cause at concentrations below the minimum growth inhibitory concentration (MIC) have yet to be fully analyzed along with the underlying molecular mechanism. In this mini-review, the ability of AMPs to synergize with different antibiotic classes or different natural compounds is examined. Furthermore, data on microbial resistance induction are reported to highlight the importance of antibiotic resistance in the fight against infections. Finally, the effects that sub-MIC levels of AMPs can have on the bacterial pathogenicity are summarized while showing how signaling pathways can be valid therapeutic targets for the treatment of infectious diseases. All these aspects support the high potential of AMPs as lead compounds for the development of new drugs with antibacterial and immunomodulatory activities.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tessa B. Moyer ◽  
Ashleigh L. Purvis ◽  
Andrew J. Wommack ◽  
Leslie M. Hicks

Abstract Background Plant defensins are a broadly distributed family of antimicrobial peptides which have been primarily studied for agriculturally relevant antifungal activity. Recent studies have probed defensins against Gram-negative bacteria revealing evidence for multiple mechanisms of action including membrane lysis and ribosomal inhibition. Herein, a truncated synthetic analog containing the γ-core motif of Amaranthus tricolor DEF2 (Atr-DEF2) reveals Gram-negative antibacterial activity and its mechanism of action is probed via proteomics, outer membrane permeability studies, and iron reduction/chelation assays. Results Atr-DEF2(G39-C54) demonstrated activity against two Gram-negative human bacterial pathogens, Escherichia coli and Klebsiella pneumoniae. Quantitative proteomics revealed changes in the E. coli proteome in response to treatment of sub-lethal concentrations of the truncated defensin, including bacterial outer membrane (OM) and iron acquisition/processing related proteins. Modification of OM charge is a common response of Gram-negative bacteria to membrane lytic antimicrobial peptides (AMPs) to reduce electrostatic interactions, and this mechanism of action was confirmed for Atr-DEF2(G39-C54) via an N-phenylnaphthalen-1-amine uptake assay. Additionally, in vitro assays confirmed the capacity of Atr-DEF2(G39-C54) to reduce Fe3+ and chelate Fe2+ at cell culture relevant concentrations, thus limiting the availability of essential enzymatic cofactors. Conclusions This study highlights the utility of plant defensin γ-core motif synthetic analogs for characterization of novel defensin activity. Proteomic changes in E. coli after treatment with Atr-DEF2(G39-C54) supported the hypothesis that membrane lysis is an important component of γ-core motif mediated antibacterial activity but also emphasized that other properties, such as metal sequestration, may contribute to a multifaceted mechanism of action.


2021 ◽  
Vol 120 (3) ◽  
pp. 143a
Author(s):  
Jane Zen ◽  
Louise E. Darling ◽  
Donald E. Elmore

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Mark Austin Hanson ◽  
Anna Dostálová ◽  
Camilla Ceroni ◽  
Mickael Poidevin ◽  
Shu Kondo ◽  
...  

Antimicrobial peptides (AMPs) are host-encoded antibiotics that combat invading microorganisms. These short, cationic peptides have been implicated in many biological processes, primarily involving innate immunity. In vitro studies have shown AMPs kill bacteria and fungi at physiological concentrations, but little validation has been done in vivo. We utilized CRISPR gene editing to delete most known immune-inducible AMPs of Drosophila, namely: 4 Attacins, 2 Diptericins, Drosocin, Drosomycin, Metchnikowin and Defensin. Using individual and multiple knockouts, including flies lacking these ten AMP genes, we characterize the in vivo function of individual and groups of AMPs against diverse bacterial and fungal pathogens. We found that Drosophila AMPs act primarily against Gram-negative bacteria and fungi, contributing either additively or synergistically. We also describe remarkable specificity wherein certain AMPs contribute the bulk of microbicidal activity against specific pathogens, providing functional demonstrations of highly specific AMP-pathogen interactions in an in vivo setting.


Sign in / Sign up

Export Citation Format

Share Document