Development of Novel Drug Delivery Prototypes Devices for Targeted Delivery Drug Therapy at the Molecular Level in Aqueous Media

2011 ◽  
Vol 8 (5) ◽  
pp. 582-585 ◽  
Author(s):  
Roy George ◽  
Theunis Gerhardus Oberholzer, Victoria Tamara Perchyonok
2020 ◽  
Vol 17 ◽  
Author(s):  
Neeraj Mittal ◽  
Varun Garg ◽  
Sanjay Kumar Bhadada ◽  
O. P. Katare

: The corona virus disease 2019 (COVID-19) has found its roots from Wuhan (China). COVID-19 is caused by a novel corona virus SARS-CoV2, previously named as 2019-nCoV. COVID-19 has spread across the globe and declared as pandemic by World health organization (WHO) on 11th March, 2020. Currently, there is no standard drug or vaccine available for the treatment, so repurposing of existing drugs is the only solution. Novel drug delivery systems (NDDS) will be boon for the repurposing of drugs. The role of various NDDS in repurposing of existing drugs for treatment of various viral diseases and their relevance in COVID-19 has discussed in this paper. It focuses on the currently ongoing research in the implementation of NDDS in COVID-19. Moreover it describes the role of NDDS in vaccine development for COVID-19. This paper also emphasizes how NDDS will help to develop the improved delivery systems (dosage forms) of existing therapeutic agents and also explore the new insights to find out the void spaces for a potential targeted delivery. So in these tough times, NDDS and nanotechnology can be a safeguard to humanity.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2632
Author(s):  
Mark J. Lynch ◽  
Oliviero L. Gobbo

Nanotheranostics constitute a novel drug delivery system approach to improving systemic, brain-targeted delivery of diagnostic imaging agents and pharmacological moieties in one rational carrier platform. While there have been notable successes in this field, currently, the clinical translation of such delivery systems for the treatment of neurological disorders has been limited by the inadequacy of correlating in vitro and in vivo data on blood–brain barrier (BBB) permeation and biocompatibility of nanomaterials. This review aims to identify the most contemporary non-invasive approaches for BBB crossing using nanotheranostics as a novel drug delivery strategy and current non-animal-based models for assessing the safety and efficiency of such formulations. This review will also address current and future directions of select in vitro models for reducing the cumbersome and laborious mandate for testing exclusively in animals. It is hoped these non-animal-based modelling approaches will facilitate researchers in optimising promising multifunctional nanocarriers with a view to accelerating clinical testing and authorisation applications. By rational design and appropriate selection of characterised and validated models, ranging from monolayer cell cultures to organ-on-chip microfluidics, promising nanotheranostic particles with modular and rational design can be screened in high-throughput models with robust predictive power. Thus, this article serves to highlight abbreviated research and development possibilities with clinical translational relevance for developing novel nanomaterial-based neuropharmaceuticals for therapy in CNS disorders. By generating predictive data for prospective nanomedicines using validated in vitro models for supporting clinical applications in lieu of requiring extensive use of in vivo animal models that have notable limitations, it is hoped that there will be a burgeoning in the nanotherapy of CNS disorders by virtue of accelerated lead identification through screening, optimisation through rational design for brain-targeted delivery across the BBB and clinical testing and approval using fewer animals. Additionally, by using models with tissue of human origin, reproducible therapeutically relevant nanomedicine delivery and individualised therapy can be realised.


Author(s):  
Kaustubh Gavali ◽  
Preeti Karade

Gastro-retentive drug delivery is novel drug delivery system which is emerged for controlled and targeted delivery of drug especially when target site lies in or near the stomach. The drug with absorption window in stomach, locally acting drug in stomach, etc. are the best suitable candidate for this drug delivery system. It can be formulated in various types like floating, expandable & unfoldable, Raft forming, swelling system Bio adhesive, High density system etc. The gastro-retentive form can be used in various dosage forms like tablet, capsule, microsphere, granules, powders, pills and laminated films according to the need. It can be also formulated as single unit and multiple unit dosage form but sometime this gastro-retention is unpredictable due to effect of pH, gastric mobility, effect of food etc. This review mainly focuses on the floating drug delivery its types, polymer used in floating drug delivery and application.


PLoS ONE ◽  
2013 ◽  
Vol 8 (1) ◽  
pp. e55304 ◽  
Author(s):  
Vanina Torres Demichelis ◽  
Aldo A. Vilcaes ◽  
Ramiro Iglesias-Bartolomé ◽  
Fernando M. Ruggiero ◽  
Jose L. Daniotti

2018 ◽  
Vol 60 (4) ◽  
Author(s):  
Kamal Dua ◽  
Rajendra Awasthi ◽  
Jyotsana R. Madan ◽  
Dinesh K. Chellappan ◽  
Buchi N. Nalluri ◽  
...  

Author(s):  
Sagar T. Malsane ◽  
Smita S. Aher ◽  
R. B. Saudagar

Oral route is presently the gold standard in the pharmaceutical industry where it is regarded as the safest, most economical and most convenient method of drug delivery resulting in highest patient compliance. Over the past three decades, orally disintegrating tablets (FDTs) have gained considerable attention due to patient compliance. Usually, elderly people experience difficulty in swallowing the conventional dosage forms like tablets, capsules, solutions and suspensions because of tremors of extremities and dysphagia. In some cases such as motion sickness, sudden episodes of allergic attack or coughing, and an unavailability of water, swallowing conventional tablets may be difficult. One such problem can be solved in the novel drug delivery system by formulating “Fast dissolving tablets” (FDTs) which disintegrates or dissolves rapidly without water within few seconds in the mouth due to the action of superdisintegrant or maximizing pore structure in the formulation. The review describes the various formulation aspects, superdisintegrants employed and technologies developed for FDTs, along with various excipients, evaluation tests, marketed formulation and drugs used in this research area.


Sign in / Sign up

Export Citation Format

Share Document