Exploration of Nanoethosomal Transgel of Naproxen Sodium for the Treatment of Arthritis

2020 ◽  
Vol 17 (10) ◽  
pp. 885-897
Author(s):  
Farzana Anjum ◽  
Foziyah Zakir ◽  
Devina Verma ◽  
Mohd Aqil ◽  
Manvi Singh ◽  
...  

Background: The present work aimed to develop an ethosomal gel of naproxen sodium for the amelioration of rheumatoid arthritis. Objective: In the present work, we have explored the potential of ethosomes to deliver naproxen into deeper skin strata. Further, the anti-inflammatory efficacy of naproxen ethosomal formulation was assessed using the carrageenan-induced rat paw edema model. Methods: Naproxen sodium nanoethosomes were prepared using different proportions of lipoid S100 (50mg-200mg), ethanol (20-50%) and water, and were further characterized on the basis of vesicle morphology, entrapment efficiency, zeta potential, in-vitro drug release and ex-vivo permeation studies. Results: The optimized ethosomal formulation was found to have 129 ± 0.01 nm particle size, 0.295 Polydispersity Index (PDI), -3.29 mV zeta potential, 88% entrapment efficiency and 96.573% drug release in 24 hours. TEM and SEM analysis of the optimized formulation showed slightly smooth spherical structures. The Confocal laser scanning microscopy showed that ethosomes could easily infiltrate into deeper dermal layers (upto 104.9μm) whereas the hydroalcoholic solution of the drug could penetrate up to 74.9μm. Further, the optimized ethosomal formulation was incorporated into 1% carbopol 934 gel base and optimized wherein the transdermal flux was found to be approximately 10 times more than the hydroethanolic solution. Also, the in-vivo pharmacodynamic study of the optimized ethosomal gel exhibited a higher percentage inhibition of swelling paw edema than marketed diclofenac gel. Conclusion: The ethosomal gel was successfully developed and has shown the potential to be a good option for the replacement of conventional therapies of rheumatoid arthritis.

Author(s):  
Koushlesh Kumar Mishra

Objective: The objective of the present work was to develop, optimize and characterize itraconazole loaded transethosomes for enhanced transdermal delivery. In this study, screening of formulation and process variables was conducted by using Box-Behnken design approach to observe significant and insignificant influence on the transethosomes. Methods: The transethosomes was developed by homogenization technique (hot method). The optimized itraconazole loaded transethosomes were evaluated for its vesicle size, polydispersity index, zeta potential, loading capacity and entrapment efficiency. Characterization was done by P-XRD, DSC and TEM. Further, in-vitro drug release study, stability study and confocal laser scanning microscopy (CLSM) study were also performed. Results: The itraconazole loaded transethosomes are developed by using soya lecithin as phospholipid, oleic acid as edge activator and cholesterol as stabilizer. Developed transethosomes showed acceptable desired vesicle size (207-409 nm), excellent colloidal dispersion characteristics (polydispersity index- 0.131 to 0.312, zeta potential -16.12to -21.96 mV) and high drug entrapment (63.37-73.02%). P-XRD and DSC results suggested that itraconazole encapsulated in amorphous state within transethosomes. In-vitro drug release study show prolonged release of itraconazole for 24 hr and confocal laser scanning microscopy confirmed accumulation of transethosomes in deeper layers of the skin. Results of stability studies showed optimized transethosomes are more stable in refrigerated temperature (4°C) as compared to room temperature (25°C). Conclusion: The results suggested that transethosomes could be better alternative to deliver drugs across the skin and potential carrier for efficient transdermal drug delivery.


Author(s):  
Nimisha Srivastava ◽  
Zeeshan Fatima ◽  
Chanchal Deep Kaur ◽  
Dilshad Ali Rizvi

Background: Dermatitis is a common inflammatory skin disease that is affecting up to 25% of children and 1%-3% of adults worldwide. Paucity of exact cure for dermatitis and untoward side effects of topical immunosuppressive steroids has resulted into a great need for making use of complementary medicine to treat dermatitis. Objective: The present research work involved the development of Berberine chloride dihydrate (BCD) enthused nanovesicles i.e. ethosomes for the management of dermatitis. Method: Ethosomes were prepared by slight modification of cold method using varying concentrations of SPC (1-3%) and ethanol (10-40%) Optimized batch BCD 12 was further added to Carbopol 934P for gel formation. GEL BCD 12 was subjected to “anti-bacterial, dermatitis and skin irritation study. Result: The vesicles were in size range 142.42-398.31 nm while polydispersity index (PDI) ranges from 0.114-1.56 and for zeta potential it was from-18.8 to -39.4. Entrapment efficiency was from 46.05-88.79 %. Confocal laser scanning microscopy showed penetration depth of rhodamine enthused ethosome across rat skin upto 110 µm which was significantly higher than rhodamine solution (10 µm). In the anti-bacterial study, BCD loaded ethosomal gel (EG) showed maximum zone of inhibition of 18.5 mm against E. coli, 14.5 mm against P. aeruginosa and 23.0 mm against S. aureus. In dinitrochlorobenzene (DNCB) induced mice dermatitis model histopathology study showed marked decrease in amount of inflammatory cell nucleus in mice treated with BCD loaded ethosomal gel followed by 56% and 50 % increase in ear swelling and ear mass respectively in morphology study. Conventional marketed formulation showed nominal decrease in epidermal thickness, 66.67 % increase in ear thickness and 63.64 % increase in ear mass. Further Primary irritation index was less than 0.4 indicating negligible irritation in all the groups. Conclusion: It can be concluded that ethosomal gel is not only an efficient carrier for BCD but also proves its potential for the management of dermatitis.


Author(s):  
Deepti Dwivedi ◽  
Shubham Pandey ◽  
Shafaque Asif ◽  
Vineet Awasthi ◽  
Gurjeet Kaur ◽  
...  

Objective: The present research work was undertaken to develop quercetin enthused nanolipoidal systems and its characterization. The objective was to investigate potential of prepared system in the management of DNCB induced dermatitis. Method: Nanolipoidal system was prepared in different combinations with quercetin, L-α phosphatidylcholine (SPC) and ethanol and characterized for particle size, polydispersity index (PDI), zeta potential, drug entrapment efficiency, percentage drug release, skin retention and skin permeation. Selected batches were further incorporated into Carbopol 934 base gel. The vesicles were in size range 324.19-359 nm while polydispersity index (PDI) ranges from 0.241-0.554 and for zeta potential, it was from -26.33 to -39.3 nm. Entrapment efficiency was from 23.77-94.68 %. Confocal laser scanning microscopy showed penetration depth of rhodamine enthused ethosome across rat skin up to 45.23 µm which was significantly higher than the rhodamine solution (10 µm). In dinitrochlorobenzene (DNCB) induced mice dermatitis model histopathology study showed a marked decrease in amount of inflammatory cell nucleus in mice treated with quercetin loaded ethosomal gel followed by 76.13% decrease in-ear swelling and ear mass respectively in morphology study. The conventional marketed formulation showed a nominal decrease in epidermal thickness. Further Primary irritation index was less than 0.4 indicating negligible irritation in all the groups. Results: The optimized formulation F6 with SPC and ethanol in the ratio of 20:80 displayed the highest drug content and entrapment efficiency of 94.68±1.14%. PDI was 0.241±0.11 and skin retention 7.7%. Batch F6 with vesicle size and zeta potential of 324.9±19 nm and -26.33 mV, respectively, was incorporated in Carbopol 934 base gel and the prepared gel was evaluated for morphology, spreadability, in vitro, ex vivo release study, and kinetics study and in vivo studies. Conclusion: The present study revealed that the developed ethosomal gel can be used for enhanced delivery of Quercetin via skin. The in vitro studies indicated that the gel serves as an efficient carrier for Quercetin. It showed its effectiveness in the management of dermatitis. Further, Quercetin loaded nanoethosomal gel formulation can be viewed as a promising drug delivery system for the management of dermatitis.


Author(s):  
Krishna Sailaja A ◽  
Jyothika Mattam

<p>ABSTRACT<br />Objective: The main objective of the work was to prepare and evaluate sulfasalazine loaded sodium alginate microbeads for sustained delivery for<br />the treatment of inflammatory bowel disease and rheumatoid arthritis. Sulfasalazine has crystalluria, thrombocytopenia, and megaloblastic anemia<br />as side effects, so to reduce side effect microbeads were prepared.<br />Methods: The sulfasalazine microbeads were prepared by inotropic gelation method by optimizing process parameters such as concentration of<br />calcium chloride, agitation speed, and time of agitation. The concentration of polymer sodium alginate was varied.<br />Result: Among the five formulations, the best formulation was considered by comparing process parameters such as the entrapment efficiency, drug<br />content, in vitro drug release studies, scanning electron microscope analysis, and zeta potential.<br />Conclusion: On comparison, B3 formulation was considered as best formulation with a mean particle size ranging from 40.9 to 244 µm, drug content<br />of 94.7%, entrapment efficiency of 87.7%, and the drug release was found to be 97.1% for 12 hrs and followed zero order kinetics and non-Fickian<br />diffusional pathway, with a zeta potential value of −56.8 mV indicating higher stability.<br />Keywords: Inotropic gelation method, Sodium alginate, Microbeads, Rheumatoid arthritis, Side effects.</p>


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Anne-Mari Mustonen ◽  
Janne Capra ◽  
Kirsi Rilla ◽  
Petri Lehenkari ◽  
Sanna Oikari ◽  
...  

Abstract Background Hyaluronic acid (HA) is the major extracellular matrix glycosaminoglycan with a reduced synovial fluid (SF) concentration in arthropathies. Cell-derived extracellular vesicles (EV) have also been proposed to contribute to pathogenesis in joint diseases. It has recently been shown that human SF contains HA-coated EV (HA–EV), but their concentration and function in joint pathologies remain unknown. Methods The aim of the present study was to develop an applicable method based on confocal laser scanning microscopy (CLSM) and image analysis for the quantification of EV, HA-particles, and HA–EV in the SF of the human knee joint. Samples were collected during total knee replacement surgery from patients with end-stage rheumatoid arthritis (RA, n = 8) and osteoarthritis (OA, n = 8), or during diagnostic/therapeutic arthroscopy unrelated to OA/RA (control, n = 7). To characterize and quantify EV, HA-particles, and HA–EV, SF was double-stained with plasma membrane and HA probes and visualized by CLSM. Comparisons between the patient groups were performed with the Kruskal–Wallis analysis of variance. Results The size distribution of EV and HA-particles was mostly similar in the study groups. Approximately 66% of EV fluorescence was co-localized with HA verifying that a significant proportion of EV carry HA. The study groups were clearly separated by the discriminant analysis based on the CLSM data. The intensities of EV and HA-particle fluorescences were lower in the RA than in the control and OA groups. Conclusions CLSM analysis offers a useful tool to assess HA–EV in SF samples. The altered EV and HA intensities in the RA SF could have possible implications for diagnostics and therapy.


2011 ◽  
Vol 90 (12) ◽  
pp. 1451-1456 ◽  
Author(s):  
X.L. Hu ◽  
B. Ho ◽  
C.T. Lim ◽  
C.S. Hsu

Numerous studies have demonstrated the effects of laser-induced heat on demineralization of enamel; however, no studies have investigated the link between heat/laser-induced changes in physicochemical properties and bacterial adhesion. In this study, we investigated the effects of thermal treatment on surface properties of enamel such as hydrophobicity and zeta potential. Bacterial adhesion to treated surfaces was characterized by confocal laser scanning microscopy, and adhesion force was quantified by atomic force microscopy. The hydrophobicity of enamel increased after heating (p < 0.05), and the zeta potential of heated enamel became more negative than that of the control (p < 0.01). Streptococcus oralis and S. mitis were more hydrophilic than S. sanguis, with more negative zeta potential (all p < 0.01). S. mitis and S. oralis occupied significantly less area on enamel after being heated (p < 0.05). Heating reduced the adhesion force of both S. mitis and S. oralis to enamel with or without saliva coating. Reduction of adhesion force was statistically significant for S. mitis (p < 0.01), whereas that of S. oralis was not statistically significant (p > 0.05). Heating did not affect the adhesion of S. sanguis with or without saliva coating. In conclusion, thermal treatment and photothermal/laser treatments may modulate the physicochemical properties of enamel, preventing the adhesion of some bacterial species.


Author(s):  
ABHISHEK SHARMA ◽  
S. L. HARIKUMAR

Objective: The purpose of the present investigation was to develop and optimize nitrendipine loaded niosomal gel for transdermal delivery using quality by design approach. Methods: Niosomal formulations were developed by application of the thin-film hydration method using different ratios of span 60, cholesterol, temperature, and optimized by three factors-three levels Box-Behnken statistical design. The independent variables were non-ionic surfactant, cholesterol, and temperature, while vesicle size, polydispersity index, and entrapment efficiency were dependent variables. The nitrendipine loaded optimized formulation was incorporated into gel and evaluated for in vitro release, ex-vivo skin permeation, confocal laser scanning microscopy, and histopathological studies. Results: The optimized formulation showed the vesicular size of 226.1±4.36 nm, polydispersity index of 0.282±0.012, and entrapment efficiency of 95.34±3.18% with spherical morphology. The optimized niosomal gel formulation showed transdermal flux 127.60 µg/cm2h through albino Wistar rat skin. Niosomal gel was proved significantly superior by confocal laser scanning microscopy for satisfactory permeation and distribution of gel, deep into the rat skin. Furthermore, dermal safety was confirmed by histopathological studies for transdermal application. Conclusion: It was concluded that the developed niosomal gel overcomes the limitation of low penetration through rat skin and could be a potential nano vesicular system for transdermal delivery.


2021 ◽  
Author(s):  
Amna Makky ◽  
Eman Sadddar ◽  
Doaa galaa ◽  
Abeer Khattab

Abstract The current investigation was designed to develop and optimize caffeine-loaded nanostructured lipid carriers (NLCs) for topical alopecia treatment. Screening of drug solubility in various excipients was executed. The 23 full factorial design was employed for NLCs optimization. Lipid type, surfactant type, and drug concentration were the independent variables. Entrapment efficiency (EE), particle size, polydispersity index (PDI) and % drug release were the chosen responses. Physiochemical evaluation, in vitro release, ex-vivo permeation, and stability study were achieved. The solubility of caffeine in stearic acid and glyceryl monostearate (GMS) was 47.11 ± 3.048 and 32.67 ± 2.955 mg/g, respectively. Oleic acid: garlic oil mixture at ratio 1:1 v/v was the oily phase. Tween 80 and Cremophor EL, Transcutol HP, carbonate buffer (pH 10.8 and ionic strength 200Mm) were chosen as a surfactant, co-surfactant, and aqueous phase, respectively. The optimized formula showed particle size, %EE, PDI, zeta potential of 358nm, 72.55 %, 0.912, -24.8, respectively. The % release was 92.9 ± 4.9 % after 4hours. Confocal laser scanning microscopy showed an improved permeation of caffeine-loaded NLCs to the whole skin layers. The histological examination proved the efficiency of caffeine NLCs optimized formula on promoting hair growth compared to the market formula.


Author(s):  
Thomas M. Jovin ◽  
Michel Robert-Nicoud ◽  
Donna J. Arndt-Jovin ◽  
Thorsten Schormann

Light microscopic techniques for visualizing biomolecules and biochemical processes in situ have become indispensable in studies concerning the structural organization of supramolecular assemblies in cells and of processes during the cell cycle, transformation, differentiation, and development. Confocal laser scanning microscopy offers a number of advantages for the in situ localization and quantitation of fluorescence labeled targets and probes: (i) rejection of interfering signals emanating from out-of-focus and adjacent structures, allowing the “optical sectioning” of the specimen and 3-D reconstruction without time consuming deconvolution; (ii) increased spatial resolution; (iii) electronic control of contrast and magnification; (iv) simultanous imaging of the specimen by optical phenomena based on incident, scattered, emitted, and transmitted light; and (v) simultanous use of different fluorescent probes and types of detectors.We currently use a confocal laser scanning microscope CLSM (Zeiss, Oberkochen) equipped with 3-laser excitation (u.v - visible) and confocal optics in the fluorescence mode, as well as a computer-controlled X-Y-Z scanning stage with 0.1 μ resolution.


Author(s):  
M. H. Chestnut ◽  
C. E. Catrenich

Helicobacter pylori is a non-invasive, Gram-negative spiral bacterium first identified in 1983, and subsequently implicated in the pathogenesis of gastroduodenal disease including gastritis and peptic ulcer disease. Cytotoxic activity, manifested by intracytoplasmic vacuolation of mammalian cells in vitro, was identified in 55% of H. pylori strains examined. The vacuoles increase in number and size during extended incubation, resulting in vacuolar and cellular degeneration after 24 h to 48 h. Vacuolation of gastric epithelial cells is also observed in vivo during infection by H. pylori. A high molecular weight, heat labile protein is believed to be responsible for vacuolation and to significantly contribute to the development of gastroduodenal disease in humans. The mechanism by which the cytotoxin exerts its effect is unknown, as is the intracellular origin of the vacuolar membrane and contents. Acridine orange is a membrane-permeant weak base that initially accumulates in low-pH compartments. We have used acridine orange accumulation in conjunction with confocal laser scanning microscopy of toxin-treated cells to begin probing the nature and origin of these vacuoles.


Sign in / Sign up

Export Citation Format

Share Document