Is Brain-Derived Neurotrophic Factor: A Common Link Between Neurodegenerative Disorders and Cancer?

2019 ◽  
Vol 16 (4) ◽  
pp. 344-352
Author(s):  
Radhika Khosla ◽  
Avijit Banik ◽  
Sushant Kaushal ◽  
Priya Battu ◽  
Deepti Gupta ◽  
...  

Background: Cancer is a common disease caused by the excessive proliferation of cells, and neurodegenerative diseases are the disorders caused due to the degeneration of neurons. Both can be considered as diseases caused by the dysregulation of cell cycle events. A recent data suggests that there is a strong inverse association between cancer and neurodegenerative disorders. There is indirect evidence to postulate Brain-derived Neurotrophic Factor (BDNF) as a potential molecular link in this association. Discussion: The BDNF levels are found to be downregulated in many neurodegenerative disorders and are found to be upregulated in various kinds of cancers. The lower level of BDNF in Alzheimer’s and Parkinson’s disease has been found to be related to cognitive and other neuropsychological impairments, whereas, its higher levels are associated with the tumour growth and metastasis and poor survival rate in the cancer patients. Conclusion: In this review, we propose that variance in BDNF levels is critical in determining the course of cellular pathophysiology and the development of cancer or neurodegenerative disorder. We further propose that an alternative therapeutic strategy that can modulate BDNF expression, can rescue or prevent above said pathophysiological course. Larger studies that examine this link through animal studies are imperative to understand the putative biochemical and molecular link to wellness and disease.

2021 ◽  
Author(s):  
Zhenquan Xuan ◽  
Xingmei Gu ◽  
Sicheng Yan ◽  
Yanfei Xie ◽  
Yiying Zhou ◽  
...  

Abstract Background Alzheimer’s disease (AD) is a neurodegenerative disorder with multiple pathological features. Therefore, multi-target-directed ligands (MTDLs) strategy has been developed to combat this disease. We have previously designed and synthesized dimeric tacrine (10)-hupyridone (A10E), a novel tacrine derivative with acetylcholinesterase (AChE) inhibition and brain-derived neurotrophic factor (BDNF) activation activity, by linking tacrine and a fragment of huperzine A. However, it was largely unknown whether A10E could act on other AD targets and produce cognition-enhancing ability in AD animal models. Methods Behavioral and biochemical methods were applied to evaluate multi-target cognitive-enhancing effects and mechanisms of A10E in APP/PS1 transgenic mice and β-amyloid (Aβ) oligomers-treated mice. The neuroprotective mechanisms of A10E were explored in SH-SY5Y cells. And the anti-aggregation effects of A10E on Aβ were directly investigated in vitro. Results A10E could prevent cognitive impairments in both APP/PS1 mice and Aβ oligomers-treated mice, with higher potency than tacrine and huperzine A. Moreover, A10E could effectively inhibit Aβ production and deposition, reduce neuroinflammation, enhance brain derived brain-derived neurotrophic factor (BDNF) expression, and elevate cholinergic neurotransmission in vivo. A10E, at nanomolar concentrations, could also inhibit Aβ oligomers-induced neurotoxicity via the activation of the TrkB/Akt pathway. Furthermore, Aβ oligomerization and fibrillization could be directly disrupted by A10E. Conclusion A10E could produce anti-AD neuroprotective effects via multi-target mechanisms, including the inhibition of Aβ aggregation, the activation of the BDNF/TrkB pathway, the reduction of neuroinflammation and the decrease of AChE activity. As MTDLs could produce additional benefits, such as overcoming the deficits of drug combination and enhancing the compliance of AD patients, our results suggested that A10E might be developed as a promising MTDL lead for the treatment of AD.


2020 ◽  
Vol 15 (1) ◽  
pp. FNL38 ◽  
Author(s):  
Zarlascht Karmand ◽  
Hans-Peter Hartung ◽  
Oliver Neuhaus

Aim: To detect IFN β-1a-induced expression of brain-derived neurotrophic factor (BDNF) to undermine the hypothesis of IFN β-1a-associated neuroprotection in multiple sclerosis (MS). Methods: The influence of IFN β-1a on in vitro activated peripheral blood lymphocytes from healthy donors was tested. Proliferation analyses were made to detect T-cell growth. BDNF expression was measured by standard ELISA. To assess the influence of IFN β-1a on BDNF expression in vivo, BDNF serum levels of MS patients treated with IFN β-1a were compared with those of untreated patients. Results: IFN β-1a inhibited T-cell proliferation dose dependently. It induced BDNF expression at middle concentrations. MS patients treated with IFN β-1a exhibited significantly lower BDNF serum levels than untreated patients. Conclusion: IFN β-1a may promote neuroprotection by inducing BDNF expression, but its importance in vivo remains open.


2016 ◽  
Vol 131 (2) ◽  
pp. 123-138 ◽  
Author(s):  
Veronica Begni ◽  
Marco Andrea Riva ◽  
Annamaria Cattaneo

Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays a key role in the central nervous system, promoting synaptic plasticity, neurogenesis and neuroprotection. The BDNF gene structure is very complex and consists of multiple 5′-non-coding exons, which give rise to differently spliced transcripts, and one coding exon at the 3′-end. These multiple transcripts, together with the complex transcriptional regulatory machinery, lead to a complex and fine regulation of BDNF expression that can be tissue and stimulus specific. BDNF effects are mainly mediated by the high-affinity, tropomyosin-related, kinase B receptor and involve the activation of several downstream cascades, including the mitogen-activated protein kinase, phospholipase C-γ and phosphoinositide-3-kinase pathways. BDNF exerts a wide range of effects on neuronal function, including the modulation of activity-dependent synaptic plasticity and neurogenesis. Importantly, alterations in BDNF expression and function are involved in different brain disorders and represent a major downstream mechanism for stress response, which has important implications in psychiatric diseases, such as major depressive disorders and schizophrenia. In the present review, we have summarized the main features of BDNF in relation to neuronal plasticity, stress response and pathological conditions, and discussed the role of BDNF as a possible target for pharmacological and non-pharmacological treatments in the context of psychiatric illnesses.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Mamoru Fukuchi ◽  
Hironori Izumi ◽  
Hisashi Mori ◽  
Masahiro Kiyama ◽  
Satoshi Otsuka ◽  
...  

2018 ◽  
Vol 19 (8) ◽  
pp. 2281 ◽  
Author(s):  
Leonardo Sandrini ◽  
Alessandro Di Minno ◽  
Patrizia Amadio ◽  
Alessandro Ieraci ◽  
Elena Tremoli ◽  
...  

Reduction in brain-derived neurotrophic factor (BDNF) expression in the brain as well as mutations in BDNF gene and/or of its receptor are associated to obesity in both human and animal models. However, the association between circulating levels of BDNF and obesity is still not defined. To answer this question, we performed a meta-analysis carrying out a systematic search in electronic databases. Ten studies (307 obese patients and 236 controls) were included in the analysis. Our data show that obese patients have levels of BDNF similar to those of controls (SMD: 0.01, 95% CI: −0.28, 0.30, p = 0.94). The lack of difference was further confirmed both in studies in which BDNF levels were assessed in serum (MD: −0.93 ng/mL, 95% CI: −3.34, 1.48, p = 0.45) and in plasma (MD: 0.15 ng/mL, 95% CI: −0.09, 0.39, p = 0.23). Data evaluation has shown that some bias might affect BDNF measurements (e.g., subject recruitment, procedures of sampling, handling, and storage), leading to a difficult interpretation of the results. Standardization of the procedures is still needed to reach strong, affordable, and reliable conclusions.


Sign in / Sign up

Export Citation Format

Share Document