Salinomycin Modulates the Expression of mRNAs and miRNAs Related to Stemness in Endometrial Cancer

Author(s):  
Karol Talkowski ◽  
Kamil Kiełbasiński ◽  
Wojciech Peszek ◽  
Beniamin Oskar Grabarek ◽  
Dariusz Boroń ◽  
...  

Background: Salinomycin, an ionophore antibiotic, has a strong anti-cancer effect, inducing the apoptosis of cancer cells and cancer stem cells. Objective: The aim of the study was to assess the influence of salinomycin on the expression profile of genes related to stemness and miRNA regulating their expression in endometrial cancer cells. Methods: Endometrial cancer cells of cell line Ishikawa were exposed to salinomycin at concentrations in the range of 0.1- 100 µM, with the aim of determining its pro-apoptotic potential and the concentration which would cause the death of 50% of the cells (Sulforhodamine B test). In the following stages, the cells were incubated with the drug at a concentration of 1µM for 12,24 and 48 hour periods and compared to the control. Determining the changes in the expression of the genes related to stemness and regulating their miRNA was done using the microarray technique and RTqPCR. ELISA assay was performed in order to determining the level of TGFβ2, COL14A1, CDH2, WNT5A in cell culture under salinomycin treatment in comparison to the control. Results: Salinomycin caused the apoptosis of cells. For the concentration of 0.1 µM, a decrease in the population of living cells by 11.9% was determined. For 1 µM, it was 49.8%, for 10 µM -69.4%, and for a concentration of 100 µM - 87.9%. The most noticeable changes in the expression caused by the addition of salinomycin into the culture were noted for mRNA: TGFβ2; WNT5A (up-regulated); COL14A1; CDH2 (down-regulated), as well as miRNA: hsa-miR-411 (up-regulated); hsamiR-200a; hsa-miR-33a; hsa-miR-199a; hsa-miR-371-5p; hsa-miR-374; hsa-miR-374b (down-regulated). Conclusion: It was confirmed that salinomycin has the influence for the stemness process. The most noticeable changes in the expression were noted for mRNA: TGFβ2; COL14A1; CDH2; WNT5A, as well as for miRNA: hsa-miR-200a; hsa-miR33a; hsa-miR-199a; hsa-miR-371-5p; hsa-miR-411; hsa-miR-374a; hsa-miR-374b.

Author(s):  
Milad Ashrafizadeh ◽  
Shahram Taeb ◽  
Hamed Haghi-Aminjan ◽  
Shima Afrashi ◽  
Kave Moloudi ◽  
...  

: Resistance of cancer cells to therapy is a challenge for achieving an appropriate therapeutic outcome. Cancer (stem) cells possess several mechanisms for increasing their survival following exposure to toxic agents such as chemotherapy drugs, radiation as well as immunotherapy. Evidences show that apoptosis plays a key role in response of cancer (stem) cells and their multi drug resistance. Modulation of both intrinsic and extrinsic pathways of apoptosis can increase efficiency of tumor response and amplify the therapeutic effect of radiotherapy, chemotherapy, targeted therapy and also immunotherapy. To date, several agents as adjuvant have been proposed to overcome resistance of cancer cells to apoptosis. Natural products are interesting because of low toxicity on normal tissues. Resveratrol is a natural herbal agent that has shown interesting anti-cancer properties. It has been shown to kill cancer cells selectively, while protecting normal cells. Resveratrol can augment reduction/oxidation (redox) reactions, thus increases the production of ceramide and the expression of apoptosis receptors such as Fas ligand (FasL). Resveratrol also triggers some pathways which induce mitochondrial pathway of apoptosis. On the other hand, resveratrol has an inhibitory effect on anti-apoptotic mediators such as nuclear factor κ B (NFκB), cyclooxygenase-2 (COX-2), phosphatidylinositol 3–kinase (PI3K) and mTOR. In this review, we explain the modulatory effects of resveratrol on apoptosis, which can augment the therapeutic efficiency of anti-cancer drugs or radiotherapy.


2012 ◽  
Vol 24 (1) ◽  
pp. 215
Author(s):  
B.-R. Yi ◽  
K.-A. Hwang ◽  
K.-C. Choi

When genetically engineered with chemo- or immunotherapeutic genes, stem cells can exhibit a potent therapeutic efficacy combined with their strong tumour tropism. The stem cells were genetically engineered to express a bacterial cytosine deaminase (CD) gene and/or a human interferon-β (IFN-b) gene; thus, 2 stem cell lines, HB1.F3.CD and HB1.F3.CD.IFN-b, were generated, respectively. The CD gene, one of suicide gene, can convert the nontoxic prodrug 5-fluorocytosine (5-FC) to an active form, 5-fluorouracil (5-FU), which has a powerful cytotoxic effect on cancer cells. In addition, human IFN-b is a typical cytokine having an antitumour effect. Using reverse transcription-PCR (RT-PCR), we confirmed CD and/or IFN-b gene expression in HB1.F3 (maternal stem cells) and HB1.F3.CD and HB1.F3.CD.IFN-b cells and the expression of chemoattractant ligands and receptors including stem cell factor (SCF), CXCR4, c-kit, vascular endothelial growth factor (VEGF) and VEGF receptor 2 (VEGFR2) in breast (MCF-7) and endometrial cancer (Ishikawa) cells. To determine the migratory capability of engineered stem cells, we performed a modified trans-well assay. In addition, to identify their therapeutic efficacy, we co-cultured HB1.F3.CD or HB1.F3.CD.IFN-b with breast and endometrial cancer cells and cell viability was measured by MTT assay. The engineered stem cells expressed CD and IFN-b genes and several chemoattractant molecules, SCF, CXCR4, VEGF/VEGFR2 and c-kit, were strongly expressed in breast and endometrial cancer cells. These stem cells were effectively migrated to breast and endometrial cancer cells due to chemoattractant molecules secreted by breast and endometrial cancer cells. In therapeutic efficacy, the viability of breast and endometrial cancer cells treated with 5-FC was reduced in the presence of the HB1.F3.CD and HB1.F3.CD.IFN-b cells. Cell viability was more reduced when co-cultured with HB1.F3.CD.IFN-b compared with HB1.F3.CD cells. In conclusion, the results from the present study suggest that genetically modified stem cells expressing CD and IFN-b can be used as a gene-based therapy for treating breast and endometrial cancer via their tumour tropism. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2011-0005723).


2019 ◽  
Author(s):  
Pedro Fong ◽  
Chicheng Cheong ◽  
Kawai Mak ◽  
Chicheng Lei ◽  
Manhei Ho ◽  
...  

Abstract Background: The incidence rate of endometrial cancer has increased significantly in the past two decades. The current chemotherapy of endometrial cancer can cause intolerable side effects. Recently, both cordycepin and gold nanostars have demonstrated the ability to inhibit the growth and differentiation of cancers. The aim of this study was to investigate the anti-endometrial cancer effects of cordycepin, gold nanostars and the combination of two. Methods: The gold nanostars were made by seed-mediated reduction, and their morphology was confirmed by laser particle size analysis, spectrophotometry and electron microscopy. MTT cytotoxicity assays, clonogenic assays and flow cytometry were employed to evaluate the inhibition rate, survival fraction and apoptosis in HEC-1A cells under different concentrations of cordycepin, Au NS and their combination. Results: This study revealed that both cordycepin and Au NS with 808 nm light exposure could inhibit cell proliferation, cause cell apoptosis, and inhibit clone ability of endometrial cancer cells. The combined Au NS-cordycepin solution produced greater anti-cancer effects than each treatment alone. Conclusion: This study supports further investigations into Au NS-cordycepin in the development of new treatments for endometrial cancer.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 45 ◽  
Author(s):  
Hany Marei ◽  
Patrizia Casalbore ◽  
Asmaa Althani ◽  
Valentina Coccè ◽  
Carlo Cenciarelli ◽  
...  

Exploitation of the potential ability of human olfactory bulb (hOB) cells to carry, release, and deliver an effective, targeted anticancer therapy within the central nervous system (CNS) milieu remains elusive. Previous studies have demonstrated the marked ability of several types of stem cells (such as mesenchymal stem cells (MSCs) to carry and release different anti-cancer agents such as paclitaxel (PTX). Herein we investigate the ability of human olfactory bulb neural stem cells (Hu-OBNSCs) to carry and release paclitaxel, producing effective cytotoxic effects against cancer cells. We isolated Hu-OBNSCs from the hOB, uploaded them with PTX, and studied their potential cytotoxic effects against cancer cells in vitro. Interestingly, the Hu-OBNSCs displayed a five-fold increase in their resistance to the cytotoxicity of PTX, and the PTX-uploaded Hu-OBNSCs were able to inhibit proliferation and invasion, and to trigger marked cytotoxic effects on glioblastoma multiforme (GBM) cancer cells, and Human Caucasian fetal pancreatic adenocarcinoma 1 (CFPAC-1) in vitro. Despite their ability to resist the cytotoxic activity of PTX, the mechanism by which Hu-OBNSCs acquire resistance to PTX is not yet explained. Collectively our data indicate the ability of the Hu-OBNSCs to resist PTX, and to trigger effective cytotoxic effects against GBM cancer cells and CFPAC-1. This indicates their potential to be used as a carrier/vehicle for targeted anti-cancer therapy within the CNS.


2021 ◽  
Vol 11 ◽  
Author(s):  
Wei Guo ◽  
Xingyuan Ma ◽  
Yunhui Fu ◽  
Chang Liu ◽  
Qiuli Liu ◽  
...  

Survivin as a member of the inhibitor of apoptosis proteins (IAPs) family is undetectable in normal cells, but highly expressed in cancer cells and cancer stem cells (CSCs) which makes it an attractive target in cancer therapy. Survivin dominant negative mutants have been reported as competitive inhibitors of endogenous survivin protein in cancer cells. However, there is a lack of systematic comparative studies on which mutants have stronger effect on promoting apoptosis in cancer cells, which will hinder the development of novel anti-cancer drugs. Here, based on the previous study of survivin and its analysis of the relationship between structure and function, we designed and constructed a series of different amino acid mutants from survivin (TmSm34, TmSm48, TmSm84, TmSm34/48, TmSm34/84, and TmSm34/48/84) fused cell-permeable peptide TATm at the N-terminus, and a dominant negative mutant TmSm34/84 with stronger pro-apoptotic activity was selected and evaluated systematically in vitro. The double-site mutant of survivin (TmSm34/84) showed more robust pro-apoptotic activity against A549 cells than others, and could reverse the resistance of A549 CSCs to adriamycin (ADM) (reversal index up to 7.01) by decreasing the expression levels of survivin, P-gp, and Bcl-2 while increasing cleaved caspase-3 in CSCs. This study indicated the selected survivin dominant negative mutant TmSm34/84 is promising to be an excellent candidate for recombinant anti-cancer protein by promoting apoptosis of cancer cells and their stem cells and sensitizing chemotherapeutic drugs.


Sign in / Sign up

Export Citation Format

Share Document