Characterization of an Unknown Impurity in Glucosamine Sulfate Sodium Chloride by HPLC-Q-TOF MS and NMR

2019 ◽  
Vol 15 (6) ◽  
pp. 650-660
Author(s):  
Miao Zhang ◽  
Peixi Zhu ◽  
Yue Chen ◽  
Weifang Ni ◽  
Yu Li ◽  
...  

Background: Glucosamine sulfate sodium chloride (glucosamine-SP) is mainly used for the treatment of osteoarthritis. During quality control of glucosamine-SP capsules, an unknown impurity was detected. Another unknown degradation product was generated together with above-mentioned impurity in heat condition. Objective: The study aimed to characterize an unknown impurity in glucosamine-SP capsules. Methods: A new volatile HPLC method compatible with mass spectrometry detection was set up. An amino column at 35 °C with a mobile phase consisting of water and acetonitrile (20: 80, v/v) was used at a flow rate of 1.5 ml/min at 297 nm. High-performance liquid chromatography quadrupole time-offlight mass spectrometry (HPLC-Q-TOF MS) was used to identify the impurity with the electrospray ionization (ESI) source in the positive ionization mode. Results: The results of HPLC-Q-TOF MS analysis indicated that the protonated molecule ions [M + H]+ of the unknown impurity and the novel degradation product were both at m/z 287. Preparative LC method was put into practice with a Prep-C18 column with a mobile phase consisting of water and acetonitrile (99: 1, v/v) at a flow rate of 20.0 ml/min at 297 nm. The assignment of the 1D and 2D NMR signals was performed for the unknown impurity. In addition, the formation of impurities was also studied. Conclusion: An unknown impurity and a degradation product in glucosamine-SP capsules were characterized. They were assigned as (1R, 2S, 3R)-1-(5-((S, E)-3, 4-dihydroxybut-1-en-1-yl) pyrazin-2-yl) butane-1, 2, 3, 4-tetraol and (1R, 2S, 3R)-1-(5-((S, Z)-3, 4-dihydroxybut-1-en-1-yl) pyrazin-2-yl) butane- 1, 2, 3, 4-tetraol.

2020 ◽  
Vol 16 ◽  
Author(s):  
Yu Li ◽  
Xiangwen Kong ◽  
Liya Hong ◽  
Chen Yue ◽  
Xinyue Wang ◽  
...  

Background: Indobufen is a drug that hinders the aggregation of platelets by reversibly repressing the cyclooxygenase enzyme, further bringing about diminished thromboxane production. During quality control of indobufen tablets, an unknown impurity was detected. Objective: To characterize an unknown impurity in indobufen tablets. Method and Results: A new method compatible with mass spectrometry detection was set up. A C18 column at 35 °C with a mobile phase consisting of aqueous buffer (including ammonium formate) and methanol (35: 65, v/v) was used at a flow rate of 1.0 mL/min at 228 nm. High-performance liquid chromatography quadrupole time-of-flight mass spectrometry mass spectrometry (HPLC-Q-TOF MS) was used to identify the impurity with the electrospray ionization (ESI) source in the positive ionization mode. The results of HPLC-Q-TOF MS analysis indicated that the protonated molecule ions [M + H]+ of the unknown impurity was at m/z 312. Preparative LC method was put into practice with a Prep-C18 column with a mobile phase consisting of water and methanol (20: 80, v/v) at a flow rate of 20.0 mL/min at 228 nm. The assignment of the 1D and 2D NMR signals was performed for the unknown impurity. In addition, possible formation of the novel impurity was also studied. Conclusion: An unknown impurity in indobufen tablets was characterized. The impurity was assigned as 2-(4-(1- hydroxy-3-oxoisoindolin-2-yl) phenyl) butanoic acid.


2018 ◽  
Vol 15 (1) ◽  
pp. 32-38 ◽  
Author(s):  
Bürge Aşçı ◽  
Mesut Koç

Introduction:This paper presents the development and validation of a novel, fast, sensitive and accurate high performance liquid chromatography (HPLC) method for the simultaneous quantitative determination of dibucaine HCl, fluocortolone pivalate and fluocortolone caproate in pharmaceutical preparations.Experiment:Development of the chromatographic method was based on an experimental design approach. A five-level-three-factor central composite design requiring 20 experiments in this optimization study was performed in order to evaluate the effects of three independent variances including mobile phase ratio, flow rate and amount of acid in the mobile phase.Conclusion:The optimum composition for mobile phase was found as a methanol:water:acetic acid mixture at 71.6 : 26.4 : 2 (v/v/v) ratio and optimum separation was acquired by isocratic elution with a flow rate of 1.3 mL/min. The analytes were detected using a UV detector at 240 nm. The developed method was validated in terms of linearity, precision, accuracy, limit of detection/quantitation and solution stability and successfully applied to the determination of dibucaine HCl, fluocortolone pivalate and fluocortolone caproate in pharmaceutical topical formulations such as suppositories and ointments.


1977 ◽  
Vol 23 (12) ◽  
pp. 2288-2291 ◽  
Author(s):  
P H Culbreth ◽  
I W Duncan ◽  
C A Burtis

Abstract We used paired-ion high-performance liquid chromatography to determine the 4-nitrophenol content of 4-nitrophenyl phosphate, a substrate for alkaline phosphatase analysis. This was done on a reversed-phase column with a mobile phase of methanol/water, 45/55 by vol, containing 3 ml of tetrabutylammonium phosphate reagent per 200 ml of solvent. At a flow rate of 1 ml/min, 4-nitrophenol was eluted at 9 min and monitored at 404 nm; 4-nitrophenyl phosphate was eluted at 5 min and could be monitored at 311 nm. Samples of 4-nitrophenyl phosphate obtained from several sources contained 0.3 to 7.8 mole of 4-nitrophenol per mole of 4-nitrophenyl phosphate.


2021 ◽  
Vol 22 (8) ◽  
pp. 4000
Author(s):  
Emilia Marchei ◽  
Maria Alias Ferri ◽  
Marta Torrens ◽  
Magí Farré ◽  
Roberta Pacifici ◽  
...  

The use of the new psychoactive substances is continuously growing and the implementation of accurate and sensible analysis in biological matrices of users is relevant and fundamental for clinical and forensic purposes. Two different analytical technologies, high-sensitivity gas chromatography-mass spectrometry (GC-MS) and ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS) were used for a screening analysis of classic drugs and new psychoactive substances and their metabolites in urine of formed heroin addicts under methadone maintenance therapy. Sample preparation involved a liquid-liquid extraction. The UHPLC-HRMS method included Accucore™ phenyl Hexyl (100 × 2.1 mm, 2.6 μm, Thermo, USA) column with a gradient mobile phase consisting of mobile phase A (ammonium formate 2 mM in water, 0.1% formic acid) and mobile phase B (ammonium formate 2 mM in methanol/acetonitrile 50:50 (v/v), 0.1% formic acid) and a full-scan data-dependent MS2 (ddMS2) mode for substances identification (mass range 100–1000 m/z). The GC-MS method employed an ultra-Inert Intuvo GC column (HP-5MS UI, 30 m, 250 µm i.d, film thickness 0.25 µm; Agilent Technologies, Santa Clara, CA, USA) and electron-impact (EI) mass spectra were recorded in total ion monitoring mode (scan range 40–550 m/z). Urine samples from 296 patients with a history of opioid use disorder were examined. Around 80 different psychoactive substances and/or metabolites were identified, being methadone and metabolites the most prevalent ones. The possibility to screen for a huge number of psychotropic substances can be useful in suspected drug related fatalities or acute intoxication/exposure occurring in emergency departments and drug addiction services.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 310
Author(s):  
Vimbainashe E. Manhivi ◽  
Retha M. Slabbert ◽  
Dharini Sivakumar

This study investigated the effect of co-ingesting Natal plums (Carissa macrocarpa) and Marula nuts (Sclerocarya birrea) on the bioaccessibility and uptake of anthocyanins, antioxidant capacity, and the ability to inhibit α-glucosidase. A Natal plum–Marula nut bar was made by mixing the raw nuts and the fruit pulp in a ratio 1:1 (v/v). The cyanidin-3-O-sambubioside (Cy-3-Sa) and cyanidin-3-O-glucoside content (Cy-3-G) were quantified using the ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS). Inclusion of Natal plum in the Marula nut bar increased the Cy-3-Sa, Cy-3-G content, antioxidants capacity and α-glucosidase inhibition compared to ingesting Marula nut separately at the internal phase. Adding Natal plum to the Marula nut bar increased bioaccessibility of Cy-3-Sa, Cy-3-G, quercetin, coumaric acid, syringic acid and ferulic acid to 80.2% and 71.9%, 98.7%, 95.2%, 51.9% and 89.3%, respectively, compared to ingesting the Natal plum fruit or nut separately.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2189 ◽  
Author(s):  
Yingjie He ◽  
Zongkai Li ◽  
Wei Wang ◽  
Suren Sooranna ◽  
Yiting Shi ◽  
...  

Aurantii fructus (AF) is a traditional Chinese medicine that has been used to improve gastrointestinal motility disorders for over a thousand years, but there is no exhaustive identification of the basic chemical components and comprehensive quality control of this herb. In this study, high-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (HPLC-Q-TOF-MS) and gas chromatography coupled mass spectrometry (GC-MS) were employed to identify the basic chemical compounds, and high-performance liquid chromatography (HPLC) was developed to determine the major biochemical markers from AF extract. There were 104 compounds belonging to eight structure types, including 13 amino acids or peptides, seven alkaloids, 18 flavanones, 14 flavones, 15 polymethoxyflavonoids, six triterpenoids, nine coumarins, and 18 volatile oils, as well as four other compounds that were systematically identified as the basic components from AF, and among them, 41 compounds were reported for the first time. Twelve bioactive ingredients were chosen as the benchmark markers to evaluate the quality of AF. The analysis was completed with a gradient elution at a flow rate of 0.7 mL/min within 55 min. This efficient method was validated showing good linearity, precision, stability, repeatability and recovery. Furthermore, the method was successfully applied to the simultaneous determination of 12 chemical markers in different samples of AF. This study could be applied to the identification of multiple bioactive substances and improve the quality control of AF.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (07) ◽  
pp. 14-21
Author(s):  
S. Sahu ◽  
◽  
R.M Singh ◽  
S.C. Mathur ◽  
D. K Sharma ◽  
...  

A simple, fast, precise and accurate ultra high performance liquid chromatography method was developed for degradation study of eletriptan hydrobromide (EH) under exaggerated conditions. An Inertsil ODS C18 (250 x 4.6 mm, 5µm) column in isocratic mode was used with mobile phase comprising of water, methanol and trifluoroacetic acid mixed in the ratio 55:45:0.1 % V/V/V, maintained at pH 3.5. The flow rate was set at 0.4 mL per minute with UV detection at 225 nm. The retention time of EH was found to be 3.7 minutes. Linearity for EH was found in the range of 3.5- 200 µg per mL and percentage recoveries were obtained in the range of 100.2 % to 100.6 %. The method was capable of resolving all degradants and principle component in sample. The proposed method is accurate, precise, selective, reproducible, and rapid for detection of degradation of eletriptan hydrobromide.


Sign in / Sign up

Export Citation Format

Share Document