pathDriver: cancer driver genes identification based on metabolic pathway

2021 ◽  
Vol 16 ◽  
Author(s):  
Xianghua Peng ◽  
Fang Liu ◽  
Ping Liu ◽  
Xing Li ◽  
Xinguo Lu

Aim: In exploiting cancer initialization and progression, a great challenge is to identify the driver genes. Background: With advances in next-generation sequencing (NGS) technologies, identification of specific oncogenic genes has emerged through integrating multi-omics data. Although the existing computational models have identified many common driver genes, they rely on individual regulatory mechanisms or independent copy number variants, ignoring the dynamic function of genes in pathways and networks. Objective: the molecular metabolic pathway is a critical biological process in tumor initiation, progression and maintenance. Establishing the role of genes in pathways and networks helps to describe their functional roles under physiological and pathological conditions at multiple levels. Methods: we present a metabolic pathway based driver genes identification (pathDriver) to distinguish different cancer types/subtypes. In pathDriver, combined with protein-protein interaction network, the metabolic pathway is utilized to construct the pathway network. Then the interaction frequency (IF) and inverse pathway frequency (IPF) is used to evaluate the collaborative impact factor of genes in the pathway network. Finally, the cancer-specific driver genes are identified by calculating the scores of edges connected to genes in the pathway network. Results: We applied it to 16 kinds of TCGA cancers for pan-cancer analysis. Connclusion: the driving pathway identified biologically significant known cancer genes and the potential new candidate genes.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Cesim Erten ◽  
Aissa Houdjedj ◽  
Hilal Kazan

Abstract Background Recent cancer genomic studies have generated detailed molecular data on a large number of cancer patients. A key remaining problem in cancer genomics is the identification of driver genes. Results We propose BetweenNet, a computational approach that integrates genomic data with a protein-protein interaction network to identify cancer driver genes. BetweenNet utilizes a measure based on betweenness centrality on patient specific networks to identify the so-called outlier genes that correspond to dysregulated genes for each patient. Setting up the relationship between the mutated genes and the outliers through a bipartite graph, it employs a random-walk process on the graph, which provides the final prioritization of the mutated genes. We compare BetweenNet against state-of-the art cancer gene prioritization methods on lung, breast, and pan-cancer datasets. Conclusions Our evaluations show that BetweenNet is better at recovering known cancer genes based on multiple reference databases. Additionally, we show that the GO terms and the reference pathways enriched in BetweenNet ranked genes and those that are enriched in known cancer genes overlap significantly when compared to the overlaps achieved by the rankings of the alternative methods.


2020 ◽  
Author(s):  
Cesim Erten ◽  
Aissa Houdjedj ◽  
Hilal Kazan

AbstractBackgroundRecent cancer genomic studies have generated detailed molecular data on a large number of cancer patients. A key remaining problem in cancer genomics is the identification of driver genes. Results: We propose BetweenNet, a computational approach that integrates genomic data with a protein-protein interaction network to identify cancer driver genes. BetweenNet utilizes a measure based on betweenness centrality on patient specific networks to identify the so-called outlier genes that correspond to dysregulated genes for each patient. Setting up the relationship between the mutated genes and the outliers through a bipartite graph, it employs a random-walk process on the graph, which provides the final prioritization of the mutated genes. We compare BetweenNet against state-of-the art cancer gene prioritization methods on lung, breast, and pan-cancer datasets. Conclusions: Our evaluations show that BetweenNet is better at recovering known cancer genes based on multiple reference databases. Additionally, we show that the GO terms and the reference pathways enriched in BetweenNet ranked genes and those that are enriched in known cancer genes overlap significantly when compared to the overlaps achieved by the rankings of the alternative methods.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Felix Grassmann ◽  
Yudi Pawitan ◽  
Kamila Czene

Abstract Genes involved in cancer are under constant evolutionary pressure, potentially resulting in diverse molecular properties. In this study, we explore 23 omic features from publicly available databases to define the molecular profile of different classes of cancer genes. Cancer genes were grouped according to mutational landscape (germline and somatically mutated genes), role in cancer initiation (cancer driver genes) or cancer survival (survival genes), as well as being implicated by genome-wide association studies (GWAS genes). For each gene, we also computed feature scores based on all omic features, effectively summarizing how closely a gene resembles cancer genes of the respective class. In general, cancer genes are longer, have a lower GC content, have more isoforms with shorter exons, are expressed in more tissues and have more transcription factor binding sites than non-cancer genes. We found that germline genes more closely resemble single tissue GWAS genes while somatic genes are more similar to pleiotropic cancer GWAS genes. As a proof-of-principle, we utilized aggregated feature scores to prioritize genes in breast cancer GWAS loci and found that top ranking genes were enriched in cancer related pathways. In conclusion, we have identified multiple omic features associated with different classes of cancer genes, which can assist prioritization of genes in cancer gene discovery.


2020 ◽  
Vol 49 (D1) ◽  
pp. D1289-D1301 ◽  
Author(s):  
Tao Wang ◽  
Shasha Ruan ◽  
Xiaolu Zhao ◽  
Xiaohui Shi ◽  
Huajing Teng ◽  
...  

Abstract The prevalence of neutral mutations in cancer cell population impedes the distinguishing of cancer-causing driver mutations from passenger mutations. To systematically prioritize the oncogenic ability of somatic mutations and cancer genes, we constructed a useful platform, OncoVar (https://oncovar.org/), which employed published bioinformatics algorithms and incorporated known driver events to identify driver mutations and driver genes. We identified 20 162 cancer driver mutations, 814 driver genes and 2360 pathogenic pathways with high-confidence by reanalyzing 10 769 exomes from 33 cancer types in The Cancer Genome Atlas (TCGA) and 1942 genomes from 18 cancer types in International Cancer Genome Consortium (ICGC). OncoVar provides four points of view, ‘Mutation’, ‘Gene’, ‘Pathway’ and ‘Cancer’, to help researchers to visualize the relationships between cancers and driver variants. Importantly, identification of actionable driver alterations provides promising druggable targets and repurposing opportunities of combinational therapies. OncoVar provides a user-friendly interface for browsing, searching and downloading somatic driver mutations, driver genes and pathogenic pathways in various cancer types. This platform will facilitate the identification of cancer drivers across individual cancer cohorts and helps to rank mutations or genes for better decision-making among clinical oncologists, cancer researchers and the broad scientific community interested in cancer precision medicine.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Antonio Colaprico ◽  
Catharina Olsen ◽  
Matthew H. Bailey ◽  
Gabriel J. Odom ◽  
Thilde Terkelsen ◽  
...  

AbstractCancer driver gene alterations influence cancer development, occurring in oncogenes, tumor suppressors, and dual role genes. Discovering dual role cancer genes is difficult because of their elusive context-dependent behavior. We define oncogenic mediators as genes controlling biological processes. With them, we classify cancer driver genes, unveiling their roles in cancer mechanisms. To this end, we present Moonlight, a tool that incorporates multiple -omics data to identify critical cancer driver genes. With Moonlight, we analyze 8000+ tumor samples from 18 cancer types, discovering 3310 oncogenic mediators, 151 having dual roles. By incorporating additional data (amplification, mutation, DNA methylation, chromatin accessibility), we reveal 1000+ cancer driver genes, corroborating known molecular mechanisms. Additionally, we confirm critical cancer driver genes by analysing cell-line datasets. We discover inactivation of tumor suppressors in intron regions and that tissue type and subtype indicate dual role status. These findings help explain tumor heterogeneity and could guide therapeutic decisions.


2021 ◽  
Vol 11 ◽  
Author(s):  
Chunyu Pan ◽  
Yuyan Zhu ◽  
Meng Yu ◽  
Yongkang Zhao ◽  
Changsheng Zhang ◽  
...  

BackgroundMYCN is an oncogenic transcription factor of the MYC family and plays an important role in the formation of tissues and organs during development before birth. Due to the difficulty in drugging MYCN directly, revealing the molecules in MYCN regulatory networks will help to identify effective therapeutic targets.MethodsWe utilized network controllability theory, a recent developed powerful tool, to identify the potential drug target around MYCN based on Protein-Protein interaction network of MYCN. First, we constructed a Protein-Protein interaction network of MYCN based on public databases. Second, network control analysis was applied on network to identify driver genes and indispensable genes of the MYCN regulatory network. Finally, we developed a novel integrated approach to identify potential drug targets for regulating the function of the MYCN regulatory network.ResultsWe constructed an MYCN regulatory network that has 79 genes and 129 interactions. Based on network controllability theory, we analyzed driver genes which capable to fully control the network. We found 10 indispensable genes whose alternation will significantly change the regulatory pathways of the MYCN network. We evaluated the stability and correlation analysis of these genes and found EGFR may be the potential drug target which closely associated with MYCN.ConclusionTogether, our findings indicate that EGFR plays an important role in the regulatory network and pathways of MYCN and therefore may represent an attractive therapeutic target for cancer treatment.


2016 ◽  
Author(s):  
wenjing Teng ◽  
Yan Li ◽  
Chao Zhou

Objective: To develop a protein-protein interaction network of rectal cancer, which is based on genetic genes as well as to predict biological pathways underlying the molecular complexes in the network. In order to analyze and summarize genetic markers related to diagnosis and prognosis of rectal cancer. Methods: the genes expression profile was downloaded from OMIM (Online Mendelian Inheritance in Man) database; the protein-protein interaction network of rectal cancer was established by Cytoscape; the molecular complexes in the network were detected by Clusterviz plugin and the pathways enrichment of molecular complexes were performed by DAVID online and Bingo (The Biological Networks Gene Ontology tool). Results and Discussion: A total of 127 rectal cancer genes were identified to differentially express in OMIM Database. The protein-protein interaction network of rectal cancer was contained 966 nodes (proteins), 3377 edges (interactive relationships) and 7 molecular complexes (score>7.0). Regulatory effects of genes and proteins were focused on cell cycle, transcription regulation and cellular protein metabolic process. Genes of DDK1, sparcl1, wisp2, cux1, pabpc1, ptk2 and htra1 were significant nodes in PPI network. The discovery of featured genes which were probably related to rectal cancer, has a great significance on studying mechanism, distinguishing normal and cancer tissues, and exploring new treatments for rectal cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yao Zhou ◽  
Shuai Wang ◽  
Haoteng Yan ◽  
Bo Pang ◽  
Xinxin Zhang ◽  
...  

Somatic copy-number alterations (SCNAs) are major contributors to cancer development that are pervasive and highly heterogeneous in human cancers. However, the driver roles of SCNAs in cancer are insufficiently characterized. We combined network propagation and linear regression models to design an integrative strategy to identify driver SCNAs and dissect the functional roles of SCNAs by integrating profiles of copy number and gene expression in lower-grade glioma (LGG). We applied our strategy to 511 LGG patients and identified 98 driver genes that dysregulated 29 cancer hallmark signatures, forming 143 active gene-hallmark pairs. We found that these active gene-hallmark pairs could stratify LGG patients into four subtypes with significantly different survival times. The two new subtypes with similar poorest prognoses were driven by two different gene sets (one including EGFR, CDKN2A, CDKN2B, INFA8, and INFA5, and the other including CDK4, AVIL, and DTX3), respectively. The SCNAs of the two gene sets could disorder the same cancer hallmark signature in a mutually exclusive manner (including E2F_TARGETS and G2M_CHECKPOINT). Compared with previous methods, our strategy could not only capture the known cancer genes and directly dissect the functional roles of their SCNAs in LGG, but also discover the functions of new driver genes in LGG, such as IFNA5, IFNA8, and DTX3. Additionally, our method can be applied to a variety of cancer types to explore the pathogenesis of driver SCNAs and improve the treatment and diagnosis of cancer.


2018 ◽  
Author(s):  
Paul Ashford ◽  
Camilla S.M. Pang ◽  
Aurelio A. Moya-García ◽  
Tolulope Adeyelu ◽  
Christine A. Orengo

Tumour sequencing identifies highly recurrent point mutations in cancer driver genes, but rare functional mutations are hard to distinguish from large numbers of passengers. We developed a novel computational platform applying a multi-modal approach to filter out passengers and more robustly identify putative driver genes. The primary filter identifies enrichment of cancer mutations in CATH functional families (CATH-FunFams) – structurally and functionally coherent sets of evolutionary related domains. Using structural representatives from CATH-FunFams, we subsequently seek enrichment of mutations in 3D and show that these mutation clusters have a very significant tendency to lie close to known functional sites or conserved sites predicted using CATH-FunFams. Our third filter identifies enrichment of putative driver genes in functionally coherent protein network modules confirmed by literature analysis to be cancer associated.Our approach is complementary to other domain enrichment approaches exploiting Pfam families, but benefits from more functionally coherent groupings of domains. Using a set of mutations from 22 cancers we detect 151 putative cancer drivers, of which 79 are not listed in cancer resources and include recently validated cancer genes EPHA7, DCC netrin-1 receptor and zinc-finger protein ZNF479.


2019 ◽  
Vol 12 (S7) ◽  
Author(s):  
Ying Hui ◽  
Pi-Jing Wei ◽  
Junfeng Xia ◽  
Yu-Tian Wang ◽  
Chun-Hou Zheng

Abstract Background Although there are huge volumes of genomic data, how to decipher them and identify driver events is still a challenge. The current methods based on network typically use the relationship between genomic events and consequent changes in gene expression to nominate putative driver genes. But there may exist some relationships within the transcriptional network. Methods We developed MECoRank, a novel method that improves the recognition accuracy of driver genes. MECoRank is based on bipartite graph to propagates the scores via an iterative process. After iteration, we will obtain a ranked gene list for each patient sample. Then, we applied the Condorcet voting method to determine the most impactful drivers in a population. Results We applied MECoRank to three cancer datasets to reveal candidate driver genes which have a greater impact on gene expression. Experimental results show that our method not only can identify more driver genes that have been validated than other methods, but also can recognize some impactful novel genes which have been proved to be more important in literature. Conclusions We propose a novel approach named MECoRank to prioritize driver genes based on their impact on the expression in the molecular interaction network. This method not only assesses mutation’s effect on the transcriptional network, but also assesses the differential expression’s effect within the transcriptional network. And the results demonstrated that MECoRank has better performance than the other competing approaches in identifying driver genes.


Sign in / Sign up

Export Citation Format

Share Document