One Pot Green Synthesis of Doxorubicin and Curcumin Loaded Magnetic Nanoparticles and Cytotoxicity Studies

Author(s):  
Güliz Ak ◽  
Tuğba Karakayalı ◽  
Ayşe N. Cin ◽  
Buket Özel ◽  
Şenay H. Şanlıer

Background: Green synthesis, an alternative method for synthesizing nanoparticles, is cheaper, environmentally friendly, and does not produce toxic effects. Doxorubicin is a chemotherapeutic agent used in lung cancer. Curcumin is a bioactive compound with properties such as an anticancer obtained from Curcuma longa. Objective: This study’s objective was to develop Doxorubicin and Curcumin loaded magnetic nanoparticles that could be synthesized by green tea leaves and investigate cytotoxic effects against the A549-luc-C8, non-small cell lung cancer line. Methods: Magnetic nanoparticles were synthesized with the green synthesis method. Furthermore, Doxorubicin and Curcumin were encapsulated into magnetic nanoparticles with the one-pot method and obtained magnetic nanoparticles characterized using FTIR, SEM/EDX, XRD, and UV-VIS spectrophotometric techniques. After that, The drug release test was performed by dialysis using pH 7.4 phosphate-buffered saline at 37 °C. MTT assay was performed to test the cytotoxicity effect in the A549-luc-C8 cell line. Results: FTIR analysis verified the magnetic structure and drug loading. SEM images of magnetic nanoparticle releaved that they had a size of about 50-60 nm in a mono-disperse manner. Drug release after 24 h was found as 5.8% for doxorubicin and 3.4% for curcumin, showing controlled release. Conclusion: Results showed that the prepared magnetic nanoparticles were thought to had synergistic antitumor activity for A549-lucC8.

2012 ◽  
Vol 62 (4) ◽  
pp. 529-545 ◽  
Author(s):  
Anuj Chawla ◽  
Pooja Sharma ◽  
Pravin Pawar

The aim of the study was to prepare site specific drug delivery of naproxen sodium using sodium alginate and Eudragit S-100 as a mucoadhesive and pH-sensitive polymer, respectively. Core microspheres of alginate were prepared by a modified emulsification method followed by cross-linking with CaCl2, which was further coated with the pH dependent polymer Eudragit S-100 (2.5 or 5 %) to prevent drug release in the upper gastrointestinal environment. Microspheres were characterized by FT-IR spectroscopy, X-ray diffraction, differential scanning calorimetry and evaluated by scanning electron microscopy, particle size analysis, drug loading efficiency, in vitro mucoadhesive time study and in vitro drug release study in different simulated gastric fluids. Stability studies of the optimized formulation were carried out for 6 months. SEM images revealed that the surface morphology was rough and smooth for core and coated microspheres, respectively. Core microspheres showed better mucoadhesion compared to coated microspheres when applied to the mucosal surface of freshly excised goat colon. The optimized batch of core microspheres and coated microspheres exhibited 98.42 ± 0.96 and 95.58 ± 0.74 % drug release, respectively. Drug release from all sodium alginate microsphere formulations followed Higuchi kinetics. Moreover, drug release from Eudragit S-100 coated microspheres followed the Korsmeyer-Peppas equation with a Fickian kinetics mechanism. Stability study suggested that the degradation rate constant of microspheres was minimal, indicating 2 years shelf life of the formulation.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 540 ◽  
Author(s):  
Črt Dragar ◽  
Tanja Potrč ◽  
Sebastjan Nemec ◽  
Robert Roškar ◽  
Stane Pajk ◽  
...  

The development of various magnetically-responsive nanostructures is of great importance in biomedicine. The controlled assembly of many small superparamagnetic nanocrystals into large multi-core clusters is needed for effective magnetic drug delivery. Here, we present a novel one-pot method for the preparation of multi-core clusters for drug delivery (i.e., magnetic nanocarriers). The method is based on hot homogenization of a hydrophobic phase containing a nonpolar surfactant into an aqueous phase, using ultrasonication. The solvent-free hydrophobic phase that contained tetradecan-1-ol, γ-Fe2O3 nanocrystals, orlistat, and surfactant was dispersed into a warm aqueous surfactant solution, with the formation of small droplets. Then, a pre-cooled aqueous phase was added for rapid cooling and the formation of solid magnetic nanocarriers. Two different nonpolar surfactants, polyethylene glycol dodecyl ether (B4) and our own N1,N1-dimethyl-N2-(tricosan-12-yl)ethane-1,2-diamine (SP11), were investigated for the preparation of MC-B4 and MC-SP11 magnetic nanocarriers, respectively. The nanocarriers formed were of spherical shape, with mean hydrodynamic sizes <160 nm, good colloidal stability, and high drug loading (7.65 wt.%). The MC-B4 nanocarriers showed prolonged drug release, while no drug release was seen for the MC-SP11 nanocarriers over the same time frame. Thus, the selection of a nonpolar surfactant for preparation of magnetic nanocarriers is crucial to enable drug release from nanocarrier.


Author(s):  
Rashmi Gupta ◽  
Leena Vishwakarma ◽  
Sunil Kant Guleri ◽  
Gourav Kumar

Background and Objective: The study aimed to investigate the augmented cytotoxic effects of polymer-coated (poly-lactic-co-glycolic acid-PLGA) gold nanoparticles (GNPs) carrying 5-fluorouracil (5-FU) in the management of lung cancer. Materials and Methods: In this study, several formulations were prepared using a double emulsion (water-oil-water) method and evaluated for drug release behavior, compatibility, cell line toxicity (A549), and apoptosis assessment. Results: Characterization results showed spherical polydispersed particles with size 29.11-178.21 nm, polydispersity index (PDI) 0.191-292, and zeta potential (ZP) 11.19-29.21 (-mV), respectively. The optimized polymer-coated 5-FU loaded gold nanoparticles (PFGNPs) illustrated a maximum drug loading (93.09 ± 10.75%) compared to others. The percent cumulative drug release of polymer-coated 5-FU loaded nanoparticles (PFNPs), 5-FU loaded gold nanoparticles (FGNPs), (PFGNPs) and 5-FU solution were 47.87± 1.5, 41.09±1.8, 56.31±1.05, and 98.8±4.2%, respectively, over 10 h. following zero-order release kinetics (except 5-FU solution). From the MTT results, the cytotoxic effect of PFGNPs on the A549 cells was 82.89 % compared to the 5-FU solution (74.91 %). EGFR and KRAS gene expression analysis under the influence of PFNPs, FGNPs, PFGNPs, and 5-FU was studied and observed maximum potency for PFNPs. Conclusion: PLGA coated biogenic gold nanoparticles have a combined effect to achieve high drug loading, sustained delivery, improved efficacy, and enhanced permeation. Conclusively, the approach may be promising to control lung cancer with reduced toxicity and improved efficacy.


2020 ◽  
pp. 088532822095259
Author(s):  
Ke Ma ◽  
Yongbin Cheng ◽  
Xinran Wei ◽  
Daijun Chen ◽  
Xiaoli Zhao ◽  
...  

In this work, gold embedded chitosan nanoparticles (Au@CS NPs) were fabricated by a one-pot method. The benzaldehyde-terminated poly[(2-methacryloyloxy) ethyl phosphorylcholine] (PMPC) was applied to modification of the gold doped chitosan nanoparticles. The obtained Au@CS-PMPC NPs had the diameter of 135 nm with a narrow distribution. The size of the Au@CS-PMPC NPs, as well as the size of the embedded gold NPs, might be well-controlled by adjusting the feeding ratio between chitosan and HAuCl4. Furthermore, the Au@CS-PMPC NPs showed increased colloidal stability, high drug loading content, pH-responsive drug release, excellent biocompatibility and bright fluorescence emission. The results demonstrated that Au@CS-PMPC NPs showed a great potential for tumor therapy via the combination advantages of pH-sensitive controlled drug release and cellular fluorescence imaging.


2019 ◽  
Vol 20 (7) ◽  
pp. 1531 ◽  
Author(s):  
Seyed Alavi ◽  
Sitah Muflih Al Harthi ◽  
Hasan Ebrahimi Shahmabadi ◽  
Azim Akbarzadeh

This study aims to improve the cytotoxicity and potency of cisplatin-loaded polybutylcyanoacrylate (PBCA) nanoparticles (NPs) for the treatment of lung cancer through the modulation of temperature and polyethylene glycol (PEG) concentration as effective factors affecting the NPs’ properties. The NPs were synthesized using an anionic polymerization method and were characterized in terms of size, drug loading efficiency, drug release profile, cytotoxicity effects, drug efficacy, and drug side effects. In this regard, dynamic light scattering (DLS), scanning electron microscopy (SEM), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) methods, and hematoxylin and eosin (H&E) staining were used. The results showed that the size and the drug loading efficiency of the synthesized spherical NPs were 355–386 nm and 14–19%, respectively. Also, the drug release profile showed a controlled and slow drug release pattern with approximately 10% drug release over 48 h. In addition, the NPs significantly increased the cytotoxicity of the cisplatin in vitro environment by approximately 2 times and enhanced the therapeutic effects of the drug in vivo environment by increasing the survival time of lung-cancer-bearing mice by 20% compared to the standard drug receiver group. Also, the nanoformulation decreased the drug toxicity in an in vivo environment. According to the results, increasing the temperature and PEG concentration improved the properties of the drug loading efficiency, drug release profile, and cytotoxicity effect of drug-loaded NPs. Consequently, the synthesized formulation increased the survival of tumor-bearing mice and simultaneously decreased the cisplatin toxicity effects. In conclusion, the prepared nanoformulation can be considered a promising candidate for further evaluation for possible therapeutic use in the treatment of lung cancer.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Ellis Benjamin ◽  
Yousef M. Hijji

Thalidomide and its derivatives are currently under investigation for their antiangiogenic, immunomodulative, and anticancer properties. Current methods used to synthesize these compounds involve multiple steps and extensive workup procedures. Described herein is an efficient microwave irradiation green synthesis method that allows preparation of thalidomide and its analogs in a one-pot multicomponent synthesis system. The multicomponent synthesis system developed involves an array of cyclic anhydrides, glutamic acid, and ammonium chloride in the presence of catalytic amounts of 4-N,N-dimethylaminopyridine (DMAP) to produce thalidomide and structurally related compounds within minutes in good isolated yields.


Sign in / Sign up

Export Citation Format

Share Document