Olive Leaf Extracts Act as Modulators of the Human Immune Response

Author(s):  
Thea Magrone ◽  
Anna Spagnoletta ◽  
Rosaria Salvatore ◽  
Manrico Magrone ◽  
Francesco Dentamaro ◽  
...  

Background: Olive tree leaves have been used in the Mediterranean area as traditional medicine in virtue of their healthy effects. Olive leaf extracts (OLEs) contain higher amounts of polyphenols than those detected in the extra virgin olive oil and fruit. Several lines of evidence support the cardioprotective, anti-oxidant and anti-inflammatory activities exerted by OLEs. Methods: Peripheral blood mononuclear cells from twenty-five healthy donors were cultured in the presence of 3 µg of two OLE extracts, extract A (resuspended in water) and extract B (resuspended in 70% ethanol). After harvesting, cell pellets were used for cytofluorimetric phenotyping, while supernatants were assayed for cytokine release by means of ELISA. Furthermore, in the same supernatants nitric oxide (NO) content was determined. Results: Both extracts, but especially extract A, increased absolute numbers of CD8+ and natural killer (NK) cells. In addition, an increased production of interferon (IFN)-γ by both extracts as an expression of T helper (h)1 activation was observed. Finally, both extracts enhanced NO release. Conclusion: OLEs, and mostly extract A, are able to in vitro modify healthy human immune response by increasing IFN-γ production which seems to be associated to the higher absolute numbers of CD8+ and NK cells and this may suggest a reinforcement of the anti-tumor activity. Furthermore, increased levels of NO may indicate the potential cardioprotective effects exerted by OLEs in virtue of their vasodilation dependent activity. Finally, OLEs are able to maintain the equilibrium between T regulatory cells and Th17 cells as evidenced by unmodified levels of interleukin (IL)-IL-10 and IL-17, respectively. In the light of these results, OLEs are potential therapeutic compounds for the treatment of chronic inflammatory disease, also preventing cardiovascular event outcome.

2017 ◽  
Vol 30 (2) ◽  
pp. 481-502 ◽  
Author(s):  
Clark D. Russell ◽  
Stefan A. Unger ◽  
Marc Walton ◽  
Jürgen Schwarze

SUMMARY Respiratory syncytial virus (RSV) is an important etiological agent of respiratory infections, particularly in children. Much information regarding the immune response to RSV comes from animal models and in vitro studies. Here, we provide a comprehensive description of the human immune response to RSV infection, based on a systematic literature review of research on infected humans. There is an initial strong neutrophil response to RSV infection in humans, which is positively correlated with disease severity and mediated by interleukin-8 (IL-8). Dendritic cells migrate to the lungs as the primary antigen-presenting cell. An initial systemic T-cell lymphopenia is followed by a pulmonary CD8+ T-cell response, mediating viral clearance. Humoral immunity to reinfection is incomplete, but RSV IgG and IgA are protective. B-cell-stimulating factors derived from airway epithelium play a major role in protective antibody generation. Gamma interferon (IFN-γ) has a strongly protective role, and a Th2-biased response may be deleterious. Other cytokines (particularly IL-17A), chemokines (particularly CCL-5 and CCL-3), and local innate immune factors (including cathelicidins and IFN-λ) contribute to pathogenesis. In summary, neutrophilic inflammation is incriminated as a harmful response, whereas CD8+ T cells and IFN-γ have protective roles. These may represent important therapeutic targets to modulate the immunopathogenesis of RSV infection.


2012 ◽  
Vol 189 (2) ◽  
pp. 935-945 ◽  
Author(s):  
Larissa N. A. Longhi ◽  
Rosiane M. da Silva ◽  
Márcia C. Fornazim ◽  
Maria C. Spago ◽  
Rômulo T. D. de Oliveira ◽  
...  

2017 ◽  
Vol 9 (5) ◽  
pp. 511-525 ◽  
Author(s):  
Sophie M. Poznanski ◽  
Amanda J. Lee ◽  
Tina Nham ◽  
Evan Lusty ◽  
Margaret J. Larché ◽  
...  

The combination of interleukin (IL)-18 and IL-12 (IL-18+IL-12) potently stimulates natural killer (NK) cells, triggering an innate immune response to infections and cancers. Strategies exploiting the effects of IL-18+IL-12 have shown promise for cancer immunotherapy. However, studies have primarily characterized the NK cell response to IL-18+IL-12 in terms of interferon (IFN)-γ production, with little focus on other cytokines produced. IL-8 plays a critical role in activating and recruiting immune cells, but it also has tumor-promoting functions. IL-8 is classically produced by regulatory NK cells; however, cytotoxic NK cells do not typically produce IL-8. In this study, we uncover that stimulation with IL-18+IL-12 induces high levels of IL-8 production by ex vivo expanded and freshly isolated NK cells and NK cells in peripheral blood mononuclear cells. We further report that tumor necrosis factor (TNF)-α, produced by NK cells following IL-18+IL-12 stimulation, regulates IL-8 production. The IL-8 produced is in turn required for maximal IFN-γ and TNF-α production. These findings may have important implications for the immune response to infections and cancer immunotherapies. This study broadens our understanding of NK cell function and IL-18+IL-12 synergy by uncovering an unprecedented ability of IL-18+IL-12-activated peripheral blood NK cells to produce elevated levels of IL-8 and identifying the requirement for intermediates induced by IL-18+IL-12 for maximal cytokine production following stimulation.


2010 ◽  
Vol 17 (7) ◽  
pp. 1094-1103 ◽  
Author(s):  
Niaina Rakotosamimanana ◽  
Vaomalala Raharimanga ◽  
Soa Fy Andriamandimby ◽  
Jean-Louis Soares ◽  
T. Mark Doherty ◽  
...  

ABSTRACT The majority of healthy individuals exposed to Mycobacterium tuberculosis will not develop tuberculosis (TB), though many may become latently infected. More precise measurement of the human immune response to M. tuberculosis infection may help us understand this difference and potentially identify those subjects most at risk of developing active disease. Gamma interferon (IFN-γ) production has been widely used as a proxy marker to study infection and to examine the human immune response to specific M. tuberculosis antigens. It has been suggested that genetically distinct M. tuberculosis strains may invoke different immune responses, although how these differences influence the immune responses and clinical outcome in human tuberculosis is still poorly understood. We therefore evaluated the antigen-specific IFN-γ production responses in peripheral blood mononuclear cells from two cohorts of subjects recruited in Antananarivo, Madagascar, from 2004 to 2006 and examined the influence of the infecting M. tuberculosis strains on this response. The cohorts were sputum-positive index cases and their household contacts. Clinical strains isolated from the TB patients were typed by spoligotyping. Comparison of the IFN-γ responses with the spoligotype of the infecting clinical strains showed that “modern” M. tuberculosis strains, like Beijing and Central Asian (CAS) strains, tended to induce lower IFN-γ responses than “ancient” strains, like East African-Indian (EAI) strains, in index cases and their household contacts. These results suggest that new strains may have evolved to induce a host response different from that of ancient strains. These findings could have important implications in the development of therapeutic and diagnostic strategies.


1997 ◽  
Vol 30 (1) ◽  
pp. 73-74
Author(s):  
Nelson J. Alvarenga ◽  
Elisabeth Bronfen ◽  
Alessandra L.A. Botelho ◽  
Lilian M.G. Bahia-Oliveira ◽  
Juliana A.S. Gomes ◽  
...  

Dipetalogaster maximus embryo extracts were used to stimulate peripheral blood mononuclear cells (PBMC) and in ELISA with sera either from Trypanosoma cruzi infected or non-infected individuals. The results showed that there was significant proliferative response and high antibody titers in sera of chagasic patients.


2005 ◽  
Vol 73 (6) ◽  
pp. 3598-3608 ◽  
Author(s):  
E. D. Williamson ◽  
H. C. Flick-Smith ◽  
C. LeButt ◽  
C. A. Rowland ◽  
S. M. Jones ◽  
...  

ABSTRACT The human immune response to a new recombinant plague vaccine, comprising recombinant F1 (rF1) and rV antigens, has been assessed during a phase 1 safety and immunogenicity trial in healthy volunteers. All the subjects produced specific immunoglobulin G (IgG) in serum after the priming dose, which peaked in value after the booster dose (day 21), with the exception of one individual in the lowest dose level group, who responded to rF1 only. Three subjects, found to have an anti-rV titer at screening, were excluded from the overall analysis. Human antibody functionality has been assessed by quantification of antibody competing for binding to rV in vitro and also by the transfer of protective immunity in human serum into the naïve mouse. Human and macaque IgG competed for binding to rV in vitro with a mouse monoclonal antibody, previously shown to protect mice against challenge with plague, suggesting that this protective B-cell epitope on rV is conserved between these three species. Total IgG to rV in individuals and the titer of IgG competing for binding to rV correlated significantly at days 21 (r = 0.72; P < 0.001) and 28 (r = 0.82; P < 0.001). Passive transfer of protective immunity into mice also correlated significantly with total IgG titer to rF1 plus rV at days 21 (r 2 = 98.6%; P < 0.001) and 28 (r 2 = 76.8%; P < 0.03). However, no significant vaccination-related change in activation of peripheral blood mononuclear cells was detected at any time. Potential serological immune correlates of protection have been investigated, but no trends specific to vaccination could be detected in cellular markers.


2021 ◽  
Vol 15 (6) ◽  
pp. e0009378
Author(s):  
Ines Lakhal-Naouar ◽  
Rami Mukbel ◽  
Robert F. DeFraites ◽  
Rupal M. Mody ◽  
Lina N. Massoud ◽  
...  

Background Sand fly saliva exposure plays an important role in immunity against leishmaniasis where it has mostly been associated with protection. Phlebotomus (Ph.) alexandri transmits Leishmania (L.) infantum, the causative agent of visceral leishmaniasis (VL), in Iraq. Our group recently demonstrated that 20% of Operation Iraqi Freedom (OIF) deployers had asymptomatic VL (AVL) indicative of prior infection by the parasite L. infantum. Little is known about Ph. alexandri saliva, and the human immune response to it has never been investigated. Here, we characterize the humoral and cellular immune response to vector saliva in OIF deployers naturally exposed to bites of Ph. alexandri and characterize their immunological profiles in association to AVL. Methodology/Principal findings The humoral response to Ph. alexandri salivary gland homogenate (SGH) showed that 64% of 200 OIF deployers developed an antibody response. To assess the cellular immune response to saliva, we selected a subcohort of subjects based on their post-travel (median 4 months; range 1–22 months) antibody response (SGH Antibody [Ab] positive or negative) as well as their AVL status; ten never-traveled controls were also included. Banked peripheral blood mononuclear cells (PBMC), collected ~10 years after end of deployment, were stimulated with SGH for 96 hours. The levels of IFN- γ, IL-6, IL-10, IL-13 and IL-17 were determined by ELISA. Our findings indicate that OIF deployers mounted a cellular response to SGH where the anti-SGH+ asymptomatic subjects developed the highest cytokine levels. Further, stimulation with SGH produced a mixture of pro-inflammatory and anti-inflammatory cytokines. Contrary to our hypothesis, we observed no correlation between the cellular immune response to Ph. alexandri SGH and prevention from asymptomatic infection with L. infantum. Conclusions/Significance As we found, although all infected deployers demonstrated persistent disease control years after deployment, this did not correlate with anti-saliva systemic cellular response. More exposure to this vector may facilitate transmission of the L. infantum parasite. Since exposure to saliva of Ph. alexandri may alter the human immune response to bites of this vector, this parameter should be taken into consideration when considering the VL risk.


2021 ◽  
Vol 27 (4) ◽  
pp. 571-572 ◽  
Author(s):  
Roberto Burioni ◽  
Eric J. Topol

Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1066
Author(s):  
Daniel González-Hedström ◽  
María de la Fuente-Fernández ◽  
Teresa Priego ◽  
Ana Isabel Martín ◽  
Sara Amor ◽  
...  

Olive-derived products, such as virgin olive oil (EVOO) and/or olive leaf extracts (OLE), exert anti-inflammatory, insulin-sensitizing and antihypertensive properties and may be useful for stabilizing omega 3 fatty acids (n-3 PUFA) due to their high content in antioxidant compounds. In this study, the addition of OLE 4:0.15 (w/w) to a mixture of algae oil (AO) rich in n-3 PUFA and EVOO (25:75, w/w) prevents peroxides formation after 12 months of storage at 30 °C. Furthermore, the treatment with the oil mixture (2.5 mL/Kg) and OLE (100 mg/Kg) for 24 month old Wistar rats in 21 days improved the lipid profile, increased the HOMA-IR and decreased the serum levels of miRNAs 21 and 146a. Treatment with this new nutraceutical also prevented age-induced insulin resistance in the liver, gastrocnemius and visceral adipose tissue by decreasing the mRNA levels of inflammatory and oxidative stress markers. Oil mixture + OLE also attenuated the age-induced alterations in vascular function and prevented muscle loss by decreasing the expression of sarcopenia-related markers. In conclusion, treatment with a new nutraceutical based on a mixture of EVOO, AO and OLE is a useful strategy for improving the stability of n-3 PUFA in the final product and to attenuate the cardiometabolic and muscular disorders associated with aging.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Diane Williamson

This review considers the steps required to evaluate a candidate biodefense vaccine or therapy as it emerges from the research phase, in order to transition it to development. The options for preclinical modelling of efficacy are considered in the context of the FDA’s Animal Rule.


Sign in / Sign up

Export Citation Format

Share Document