Pulse-Width Modulated Amplifier for DC Servo System and Its Matlab Simulation

2015 ◽  
Vol 9 (1) ◽  
pp. 625-631
Author(s):  
Ma Xiaocheng ◽  
Zhang Haotian ◽  
Cheng Yiqing ◽  
Zhu Lina ◽  
Wu Dan

This paper introduces a mathematical model for Pulse-Width Modulated Amplifier for DC Servo Motor. The relationship between pulse-width modulated (PWM) signal and reference rotation speed is specified, and a general model of motor represented by transfer function is also put forward. When the input signal changes, the rotation speed of the servo motor will change accordingly. By changing zeros and poles, transient performance of this system is discussed in detail, and optimal ranges of the parameters is recommended at the end of discussion.

2013 ◽  
Vol 572 ◽  
pp. 636-639
Author(s):  
Xi Chen ◽  
Gang Wang

This paper deals with the walking stability analysis of a multi-legged crablike robot over slope using normalized energy stability margin (NESM) method in order to develop a common stabilization description method and achieve robust locomotion for the robot over rough terrains. The robot is simplified with its static stability being described by NESM. The mathematical model of static stability margin is built so as to carry out the simulation of walking stability over slope for the crablike robot that walks in double tetrapod gait. As a consequence, the relationship between stability margin and the height of the robots centroid, as well as its inclination relative to the ground is calculated by the stability criterion. The success and performance of the stability criterion proposed is verified through MATLAB simulation and real-world experiments using multi-legged crablike robot.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Qiang Li ◽  
Yi-ming Fang ◽  
Jian-xiong Li ◽  
Zhuang Ma

In this paper, a fuzzy PI control method based on nonlinear feedforward compensation is proposed for the nonsinusoidal vibration system of mold driven by servo motor, rotated in single direction with variable speed. During controller design, there are mainly two issues to consider: (i) nonlinear relationship (approximate periodic function) between mold displacement and servo motor speed and (ii) uncertainties caused by backlash due to motor variable speed. So, firstly, the relationship between mold displacement and motor rotation speed is built directly based on the rotation vector method. Then, an observer is designed to estimate the uncertainties and feedforward compensation. Secondly, as the motor rotates in single direction with variable speed, a fuzzy control with bidirectional parameter adjustment is adopted to improve rapidity and stability based on the traditional PI method. Finally, some simulation results show the effectiveness of the proposed control method.


2012 ◽  
Vol 529 ◽  
pp. 295-300
Author(s):  
Jie Yao ◽  
Yong Hong Zhu

In order to stimulate the movement of small scale helicopters, DOF flight test platform based on the similarity theory has been thought out. Accordingly, considering the platform to be the researching object and combing the Lagrange-Euler equation with the equivalent moment method, the system kinetic model is worked out and the physical parameter is pre-estimated. The relationship between the lift force and the change of the rotation speed is acquired by the experiment with the fixed collective angle. According to the dynamic equation, a PID revised feed-forward controlling algorithm with robust characteristic was devised and the MATLAB simulation is applied to verify fast astringency and validity of the controller


2018 ◽  
Vol 7 (2.24) ◽  
pp. 172
Author(s):  
E Govinda Kumar ◽  
B Shiva ram ◽  
U B.Deepak ◽  
G Sabarinathan

This paper dealt that, the quadruple tanks process with an interaction, which is consisting of four interconnected tanks and included with an interaction of bottom two tanks. The mathematical model of quadruple tankwith interaction is developed throughminimum phase and non-minimum phase by changing a valve position. It described clearly about the mathematical modeling of quadruple-tanks process with an interaction, which is obtained based on minimum and non-minimum characteristics. The obtained process transfer function models are validated using MATLAB simulation. The obtained transfer function models are used to further control and analysis of the same problem.  


1991 ◽  
Vol 24 (5) ◽  
pp. 85-96 ◽  
Author(s):  
Qingliang Zhao ◽  
Zijie Zhang

By means of simulated tests of a laboratory–scale oxidation pond model, the relationship between BOD5 and temperature fluctuation was researched. Mathematical modelling for the pond's performance and K1determination were systematically described. The calculation of T–K1–CeCe/Ci) was complex but the problem was solved by utilizing computer technique in the paper, and the mathematical model which could best simulate experiment data was developed. On the basis of experiment results,the concept of plug–ratio–coefficient is also presented. Finally the optimum model recommended here was verified with the field–scale pond data.


2014 ◽  
Vol 541-542 ◽  
pp. 658-662
Author(s):  
Jian Li ◽  
Yuan Chen ◽  
Yang Chun Yu ◽  
Zhu Xin Tian ◽  
Yu Huang

To study the velocity and pressure distribution of the oil film in a heavy hydrostatic thrust bearing, a mathematical model of the velocity is proposed and the finite volume method (FVM) has been used to simulate the flow field under different working conditions. Some pressure experiments were carried out and the results verified the correctness of the simulation. It is concluded that the pressure distribution varies small under different rotation speed when the surface load on the workbench is constant. But the velocity of the oil film is influenced greatly by the rotation speed. When the rotation speed of the workbench is as quick as enough, the velocity of the oil film on one radial side of the pad will be zero, that is to say the lubrication oil will be drained from the other three sides of the recess.


Sign in / Sign up

Export Citation Format

Share Document