scholarly journals An Appraisal of Compressive Strength of Concrete Incorporated with Chemically Different Fly Ashes

2020 ◽  
Vol 14 (1) ◽  
pp. 188-199
Author(s):  
Atsushi Suzuki ◽  
Dinil Pushpalal ◽  
Hiroo Kashima

Introduction: Generally, the compressive strength of fly ash concrete differs depending on the properties of fly ash. This strength difference causes difficulties for concrete engineers to guarantee the strength of supplied concrete. Methods: This research firstly carried out the compressive strength tests on the concrete incorporated with fly ash possessing various chemical composition, which are high and low calcium fly ashes. The linear and nonlinear regression analyses were adopted to build the strength prediction model. Results: The chemical and physical properties of procured fly ash with high and low calcium contents have been quantified. Specifically, the compressive strength of concrete with high calcium fly ash demonstrates a strong correlation with calcium content, rather than physical properties such as the surface area and loss of ignition. Therefore, the compressive strength on 28th day can be assessed by a simple formula, taking CaO content of fly ash as an independent variable. In further, the strength on an arbitrary day can be predicted based on the 28th day strength and the replacement rate of fly ash. Conclusion: The two-step framework proposed in this research enables concrete engineers to evaluate the compressive strength of fly ash concrete with an error rate of less than 30%, within the applicable range addressed in this research.

1984 ◽  
Vol 43 ◽  
Author(s):  
R. I. A. Malek ◽  
D. M. Roy

AbstractThe zeta-potentials of two fly ashes were studied (high-calcium and low-calcium). It was found that they possess a point of charge reversal at pH = 10.5 to 12. The point of zero charge (low-calcium fly ash) was found to be at pH = 5. Furthermore, it shifted to more acidic values after the fly ash is aged in several calcium-containing solutions. The surficial changes that could happen when mixing fly ashes with cement and concrete were further evaluated by aging fly ashes in different solutions: Ca(OH)2, CaSO4·2H2O, NaOH and water solutions. Information from analyses for different ionic species in the solutions and characterization of the solid residues (XRD and SEM) was used in tentative explanations for the different behavior of the two types of fly ash in cementitious mixtures and concrete.


1988 ◽  
Vol 136 ◽  
Author(s):  
Ashaari B. Mohamad ◽  
David L. Gress

ABSTRACTRefuse-derived-fuel (RDF) consisting mainly of waste paper and plastics is a viable fuel source for the production of power. An experimental test burn partially substituting coal with RDF was undertaken by the Public Service of New Hampshire at the Merrimack Power Station.Five percent and ten percent RDF were substituted, on a BTU basis, for coal in the test bums. The chemical and physical properties of the resulting fly ash were determined. Twelve test burn days were run with 4 days of 5% RDF and 8 days of 10% RDF. Emphasis was placed on investigating the effect of the RDF fly ash on Portland cement concrete.Most of the chemical and physical properties of the coal-RDF fly ash were found to be comparable with ordinary coal fly ash except for the amount of cadmium and lead, the pozzolanic activity index and the compressive strength of fly ash concrete. Cadmium and lead were at average levels of 5.1 ppm and 102.6 ppm for the 5% RDF, and 7.8 ppm and 198.3 ppm for the 10% RDF, respectively. Although the pozzolanic activity index of coal-RDF fly ash increases over normal coal fly ash, preliminary results show that the 28-day compressive strength of concrete with direct replacement of cement and sand decreases by up to 30%. Leaching tests on crushed concrete were conducted to evaluate the environmental effect of acid rain.


2011 ◽  
Vol 250-253 ◽  
pp. 307-312 ◽  
Author(s):  
Muthuramalingam Jayakumar ◽  
M. Salman Abdullahi

Even though the use of fly ash in concrete is nowadays a common practice, its relatively slow pozzolanic reactivity hinders its greater utilization; hence efficient methods of activation are on demand. This study was carried out to evaluate the influence of lime as a chemical activator on the mechanical and durability properties of high strength fly ash concrete. Mixtures were made with 0, 30, 40, and 50% of cement replaced by low calcium fly ash. Corresponding mixtures were also made with the same amount of fly ash and addition of 10% of lime to each mixture. For each concrete mixture, slump, compressive strength, water absorption, sorptivity, apparent volume of permeable voids, and resistance to chloride-ion penetration were measured. The results obtained showed that addition of lime improved the compressive strength significantly at all ages. The strength of all the fly ash mixtures containing lime surpassed that of the corresponding Portland cement mix at 60 days. Addition of lime also improved the sorptivity and resistance to chloride-ion penetration of the fly ash concrete. It however increases the water absorption and the volume of permeable voids of the fly ash concrete.


2011 ◽  
Vol 480-481 ◽  
pp. 59-65
Author(s):  
Shuang Xi Li ◽  
Tuan She Yang ◽  
Zhi Ming Wang ◽  
Quan Hu

Low-calcium fly ash is paid much attention for its wide use in engineering, the research and application technology of it are very mature, but as to high-calcium fly ash concrete, the researches on stability, mechanical property and durability of it are very less , The existing researches are still inadequate for practice of engineering. As to this problem, using small shek kip hydropower project as example, the volume stability of high-calcium fly ash concretes with different fly ash dosages are tested, then the optimal dosage of the high-calcium fly ash is determined; based on this, the impacts of high-calcium fly ash on the performance of mechanical properties , impermeability and frost resistance of concrete are studied; Finally, macro performance is analyzed from a micro-mechanism point of view through taking the electron micrograph. As the study shows, the optimal dosage of high-calcium fly ash should be taken as 20% -25%; for the concrete with special requirements, the dosage can be relaxed to 30% when the high-calcium fly ash achieves high quality. The compressive strength of high-calcium fly ash concrete is higher than the low-calcium fly ash concrete. Strength development advantage of high-calcium fly ash concrete reflects at the early age, this advantage takes the trend of weakening as the development of age. Concrete mixed with high-calcium fly ash has good performance in impermeability. The high-calcium fly ash has high activity, the high-calcium fly ash and secondary hydration reaction products can be filled into the pore capillary and cracks of the concrete structure, improving the pore structure, thereby increasing the density of cement paste. High-calcium fly ash concrete has good performance in frost resistance. The destructive effects of freeze-thaw cycles on cement structure has connection with the microstructure of cement and impermeability , the improvement of impermeability avoids the water entering into the concrete, reduces the risk of destruction caused by frost heave.The study on micro-mechanism proves well the macro-phenomena above.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Tanakorn Phoo-ngernkham ◽  
Chattarika Phiangphimai ◽  
Nattapong Damrongwiriyanupap ◽  
Sakonwan Hanjitsuwan ◽  
Jaksada Thumrongvut ◽  
...  

This research focuses on developing a mix design methodology for alkali-activated high-calcium fly ash concrete (AAHFAC). High-calcium fly ash (FA) from the Mae Moh power plant in northern Thailand was used as a starting material. Sodium hydroxide and sodium silicate were used as alkaline activator solutions (AAS). Many parameters, namely, NaOH concentration, alkaline activator solution-to-fly ash (AAS/FA) ratio, and coarse aggregate size, were investigated. The 28-day compressive strength was tested to validate the mix design proposed. The mix design methodology of the proposed AAHFAC mixes was given step by step, and it was modified from ACI standards. Test results showed that the 28-day compressive strength of 15–35 MPa was obtained. After modifying mix design of the AAHFAC mixes by updating the AAS/FA ratio from laboratory experiments, it was found that they met the strength requirement.


2021 ◽  
Vol 36 (3) ◽  
Author(s):  
Ronal Alex Mauricio Villarrial ◽  
◽  
Marlon Gaston Farfan Cordova ◽  

This research was conducted to determine the effect of the scallop shell lime (SSL) on the compressive strength of concrete made with Portland cement type Ico and natural aggregates from a quarry, where SSL was added at 3%, 4% and 5%. The physical and mechanical characteristics of the aggregates were determined based on the N.T.P. 400.037/ASTM C22 standard, and the mix design was carried out through the ACI method. The SSL was used due to the high calcium content present in the valve. Standard concrete controls were prepared and cured by adding 3%, 4% and 5% SSL (339.0183/ASTM C192M), which were analyzed at 7, 14 and 28 days of curing. The results showed that the compressive strength at 28 days was 242.63 kg/cm2 when 3% SSL was added, increasing with respect to the standard control by 16%. With the addition of 4% SSL, the maximum strength reached was 245.25 kg/cm2, and with 5%, the compressive strength reached was 261.17 kg/cm2, increasing by 24%. In conclusion, the SSL positively affects the increase of concrete strength, and the percentage with the highest incidence is 5%.


Minerals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 337 ◽  
Author(s):  
Juan Cosa ◽  
Lourdes Soriano ◽  
María Borrachero ◽  
Lucía Reig ◽  
Jordi Payá ◽  
...  

The properties of a binder developed by the alkali-activation of a single waste material can improve when it is blended with different industrial by-products. This research aimed to investigate the influence of blast furnace slag (BFS) and fly ash (FA) (0–50 wt %) on the microstructure and compressive strength of alkali-activated ceramic sanitaryware (CSW). 4 wt % Ca(OH)2 was added to the CSW/FA blended samples and, given the high calcium content of BFS, the influence of BFS was analyzed with and without adding Ca(OH)2. Mortars were used to assess the compressive strength of the blended cements, and their microstructure was investigated in pastes by X-ray diffraction, thermogravimetry, and field emission scanning electron microscopy. All the samples were cured at 20 °C for 28 and 90 days and at 65 °C for 7 days. The results show that the partial replacement of CSW with BFS or FA allowed CSW to be activated at 20 °C. The CSW/BFS systems exhibited better mechanical properties than the CSW/FA blended mortars, so that maximum strength values of 54.3 MPa and 29.4 MPa were obtained in the samples prepared with 50 wt % BFS and FA, respectively, cured at 20 °C for 90 days.


2019 ◽  
Vol 258 ◽  
pp. 05032 ◽  
Author(s):  
Arie Wardhono

The use of geopolymer binder as cement replacement material can reduce the amount of carbon dioxide gas produced during the Portland Cement manufacturing process. However, the main issue of geopolymer binder is in the mixing process of sodium silicate and NaOH which requires specialized knowledge and strict supervision. This paper reports the effect of water binder ratio on strength development of fly ash geopolymer mortar using dry geopolymer powder. Fly ash with high calcium content was used as primary material. The dry geopolymer powder was prepared by wet mixing method which was made by drying a mixture of NaOH solution and limestone for 24 hours. The variations of water to binder ratio were 0.30, 0.35, 0.40, 0.45, and 0.50. Strength properties were measured by compressive strength at the age of 7, 14 and 28 days. The results showed that the water binder ratio significantly affect the strength development of geopolymer mortar prepared by dry geopolymer powder. The water binder ratio of 0.40 gives the highest compressive strength of 10.3 MPa at 28 days. This suggests that the use of dry geopolymer powder on geopolymer mortar production can overcome the difficulties of geopolymer mortar mixing on site.


Author(s):  
Eslam Gomaa ◽  
Simon Sargon ◽  
Cedric Kashosi ◽  
Ahmed Gheni ◽  
Mohamed ElGawady

<p>The effect of the water to fly ash (W/FA), alkali activators to fly ash (Alk/FA), and curing regimes on the workability and compressive strength of the alkali-activated mortar (AAM) was studied. Three high calcium fly ashes (FAs) having different chemical compositions were used. Sodium hydroxide (SH) and sodium silicate (SS) were used as the alkali activators. The two alkali activators were mixed together at ratio of 1.0. Two curing regimes, elevated heat curing in an electric oven at 70°C for 24 hr and ambient curing at 23 ± 2°C, were applied. The water to fly ash (W/FA) ratios were 0.350, 0.375, and 0.400. However, the alkali activators to fly ash (Alk/FA) ratios were 0.250, 0.275 and 0.300. The results revealed that the workability and the compressive strength of the oven cured specimens were decreased with increasing the calcium content of FA in the mixture. However, the compressive strength of the specimens that cured under the ambient temperature increased with increasing the calcium content. The workability increased with increasing the W/FA and decreasing the Alk/FA. The compressive strength based on both curing regimes decreased with increasing the W/FA. The optimum Alk/FA was 0.275 with W/FA of 0.400.</p>


2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Piotr-Robert Lazik ◽  
◽  
Harald Garrecht ◽  

Many concrete technologists are looking for a solution to replace Fly Ashes that would be unavailable in a few years as an element that occurs as a major component of many types of concrete. The importance of such component is clear - it saves cement and reduces the amount of CO2 in the atmosphere that occurs during cement production. Wood Ashes from electrostatic filter can be used as a valuable substitute in concrete. The laboratory investigations showed that the wood ash concrete had a compressive strength comparable to coal fly ash concrete. These results indicate that wood ash can be used to manufacture normal concrete.


Sign in / Sign up

Export Citation Format

Share Document