scholarly journals Quality Detection System of Transparent Nonel Tubes Based on Image Processing

2015 ◽  
Vol 9 (1) ◽  
pp. 697-702
Author(s):  
Guodong Sun ◽  
Wei Xu ◽  
Lei Peng

The traditional quality detection method for transparent Nonel tubes relies on human vision, which is inefficient and susceptible to subjective factors. Especially for Nonel tubes filled with the explosive, missed defects would lead to potential danger in blasting engineering. The factors affecting the quality of Nonel tubes mainly include the uniformity of explosive filling and the external diameter of Nonel tubes. The existing detection methods, such as Scalar method, Analysis method and infrared detection technology, suffer from the following drawbacks: low detection accuracy, low efficiency and limited detection items. A new quality detection system of Nonel tubes has been developed based on machine vision in order to overcome these drawbacks. Firstly the system architecture for quality detection is presented. Then the detection method of explosive dosage and the relevant criteria are proposed based on mapping relationship between the explosive dosage and the gray value in order to detect the excessive explosive faults, insufficient explosive faults and black spots. Finally an algorithm based on image processing is designed to measure the external diameter of Nonel tubes. The experiments and practical operations in several Nonel tube manufacturers have proved the defect recognition rate of proposed system can surpass 95% at the detection speed of 100m/min, and system performance can meet the quality detection requirements of Nonel tubes. Therefore this quality detection method can save human resources and ensure the quality of Nonel tubes.

2012 ◽  
Vol 572 ◽  
pp. 338-342 ◽  
Author(s):  
Zhi Guo Liang ◽  
Quan Yang ◽  
Ke Xu ◽  
Fei He ◽  
Xiao Chen Wang ◽  
...  

Structured light 3D measurement technology with its simple structure, non-contact measurement, fast measurement speed and other advantages, has been widely used. Steel plate surface quality detection is not confined to the two-dimensional feature of gray detection, and local topography measurement for surface quality of steel plate detection becomes increasingly important. In this paper, steel plate surface 3D detection method based on structured light and the factors affecting the measurement accuracy are analyzed. Several effective methods of improving 3D detection accuracy are put forward. Compared with the traditional structured light 3D detection methods, the detection accuracy of new methods is remarkably improved, thus possessing better application values.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 66
Author(s):  
Chengliang Zhang ◽  
Tianhui Li ◽  
Wenbin Zhang

The detection of cotton impurity rates can reflect the cleaning effect of cotton impurity removal equipment, which plays a vital role in improving cotton quality and economic benefits. Therefore, several studies are being carried out to improve detection accuracy. Image processing technology is increasingly used in cotton impurity detection, in which deep learning technology based on convolution neural networks has shown excellent results in image classification, segmentation, target detection, etc. However, most of these applications focus on detecting foreign fibers in lint, which is of little significance to the parameter adjustment of cotton impurity removal equipment. For this reason, our goal was to develop an impurity detection system for seed cotton. In image segmentation, we propose a multi-channel fusion segmentation algorithm to segment the machine-picked seed cotton image. We collected 1017 images of machine-picked seed cotton as a dataset to train the detection model and tested and recognized 100 groups of samples, with an average recognition rate of 94.1%. Finally, the image segmented by the multi-channel fusion algorithm is input into the improved YOLOv4 network model for classification and recognition, and the established V–W model calculates the content of all kinds of impurities. The experimental results show that the impurity content in machine-picked cotton can be obtained effectively, and the detection accuracy of the impurity rate can increase by 5.6%.


2012 ◽  
Vol 616-618 ◽  
pp. 1993-1996
Author(s):  
Yu Zhuo Men ◽  
Hai Bo Yu ◽  
Hua Wang ◽  
Jin Gang Gao ◽  
Xin Pan

On-line detection method for automobile frame side rail process holes is proposed in this articled. It is achieved by virtue of machine vision technology detection method. Many images captured by CCD camera are processed and analyzed to finally complete the automatic detection of automobile chassis frame process holes. Machine vision technology is applied to achieve the on-line detection of machining quality of frame side rail mounting holes. The developed detection system prototype has very high detection accuracy.


2013 ◽  
Vol 433-435 ◽  
pp. 426-429
Author(s):  
Jin Qiu Liu ◽  
Bing Fa Zhang ◽  
Yu Zeng Wang ◽  
Guang Ya Li ◽  
Jing Ru Han

A method of non-contact detection of bolt fracture have serial steps as follows: First of all the required data is obtained through image acquisition, then through the edge detection, image recognition and other image processing on the image to get the bolt fracture identification results, finally the non-contact measurement bolt fracture is realized. Experiments show that bolt crack detection method based on image processing, compared with the traditional detection methods improve the efficiency of detection and improve the detection accuracy. The method for bolt crack detection is feasible.


2014 ◽  
Vol 1003 ◽  
pp. 193-197 ◽  
Author(s):  
Bin Huang ◽  
Ping Wang ◽  
Si Le Ma

In the fields of transparent liquid impurity detection based on machine vision technology, how to effectively detect impurities in the liquid is a difficult problem which has not yet been solved, mainly in the low recognition rate, the slow recognition speed, and the phenomenon of error detection and undetected. Therefore, this paper presents a new impurity detection method. Firstly, the hardware structure of the system is introduced in this paper. Then the flow diagram of impurity detection is presented. Finally, the algorithm of impurity detection is studied. Experiments show that the system introduced in this paper can identify impurities in liquid well on condition of ensuring the detection speed and detection accuracy.


Author(s):  
Zhenying Xu ◽  
Ziqian Wu ◽  
Wei Fan

Defect detection of electromagnetic luminescence (EL) cells is the core step in the production and preparation of solar cell modules to ensure conversion efficiency and long service life of batteries. However, due to the lack of feature extraction capability for small feature defects, the traditional single shot multibox detector (SSD) algorithm performs not well in EL defect detection with high accuracy. Consequently, an improved SSD algorithm with modification in feature fusion in the framework of deep learning is proposed to improve the recognition rate of EL multi-class defects. A dataset containing images with four different types of defects through rotation, denoising, and binarization is established for the EL. The proposed algorithm can greatly improve the detection accuracy of the small-scale defect with the idea of feature pyramid networks. An experimental study on the detection of the EL defects shows the effectiveness of the proposed algorithm. Moreover, a comparison study shows the proposed method outperforms other traditional detection methods, such as the SIFT, Faster R-CNN, and YOLOv3, in detecting the EL defect.


Author(s):  
Chen Liu ◽  
Yude Dong ◽  
Yanli Wei ◽  
Jiangtao Wang ◽  
Hongling Li

The internal structure analysis of radial tires is of great significance to improve vehicle safety and during tire research. In order to perform the digital analysis and detection of the internal composition in radial tire cross-sections, a detection method based on digital image processing was proposed. The research was carried out as follows: (a) the distribution detection and parametric analysis of the bead wire, steel belt, and carcass in the tire section were performed by means of digital image processing, connected domain extraction, and Hough transform; (b) using the angle of location distribution and area relationship, the detection data were optimized through coordinate and quantity relationship constraints; (c) a detection system for tire cross-section components was designed using the MATLAB platform. Our experimental results showed that this method displayed a good detection performance, and important practical significance for the research and manufacture of tires.


2021 ◽  
Vol 233 ◽  
pp. 02012
Author(s):  
Shousheng Liu ◽  
Zhigang Gai ◽  
Xu Chai ◽  
Fengxiang Guo ◽  
Mei Zhang ◽  
...  

Bacterial colonies detecting and counting is tedious and time-consuming work. Fortunately CNN (convolutional neural network) detection methods are effective for target detection. The bacterial colonies are a kind of small targets, which have been a difficult problem in the field of target detection technology. This paper proposes a small target enhancement detection method based on double CNNs, which can not only improve the detection accuracy, but also maintain the detection speed similar to the general detection model. The detection method uses double CNNs. The first CNN uses SSD_MOBILENET_V1 network with both target positioning and target recognition functions. The candidate targets are screened out with a low confidence threshold, which can ensure no missing detection of small targets. The second CNN obtains candidate target regions according to the first round of detection, intercepts image sub-blocks one by one, uses the MOBILENET_V1 network to filter out targets with a higher confidence threshold, which can ensure good detection of small targets. Through the two-round enhancement detection method has been transplanted to the embedded platform NVIDIA Jetson AGX Xavier, the detection accuracy of small targets is significantly improved, and the target error detection rate and missed detection rate are reduced to less than 1%.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yubo Song ◽  
Yijin Geng ◽  
Junbo Wang ◽  
Shang Gao ◽  
Wei Shi

Since a growing number of malicious applications attempt to steal users’ private data by illegally invoking permissions, application stores have carried out many malware detection methods based on application permissions. However, most of them ignore specific permission combinations and application categories that affect the detection accuracy. The features they extracted are neither representative enough to distinguish benign and malicious applications. For these problems, an Android malware detection method based on permission sensitivity is proposed. First, for each kind of application categories, the permission features and permission combination features are extracted. The sensitive permission feature set corresponding to each category label is then obtained by the feature selection method based on permission sensitivity. In the following step, the permission call situation of the application to be detected is compared with the sensitive permission feature set, and the weight allocation method is used to quantify this information into numerical features. In the proposed method of malicious application detection, three machine-learning algorithms are selected to construct the classifier model and optimize the parameters. Compared with traditional methods, the proposed method consumed 60.94% less time while still achieving high accuracy of up to 92.17%.


Author(s):  
Yong He

The current automatic packaging process is complex, requires high professional knowledge, poor universality, and difficult to apply in multi-objective and complex background. In view of this problem, automatic packaging optimization algorithm has been widely paid attention to. However, the traditional automatic packaging detection accuracy is low, the practicability is poor. Therefore, a semi-supervised detection method of automatic packaging curve based on deep learning and semi-supervised learning is proposed. Deep learning is used to extract features and posterior probability to classify unlabeled data. KDD CUP99 data set was used to verify the accuracy of the algorithm. Experimental results show that this method can effectively improve the performance of automatic packaging curve semi-supervised detection system.


Sign in / Sign up

Export Citation Format

Share Document