scholarly journals Whey Protein, but Not Soy Protein, Supplementation Alleviates Exerciseinduced Lipid Peroxidation in Female Endurance Athletes

2013 ◽  
Vol 7 (1) ◽  
pp. 13-19 ◽  
Author(s):  
Myra K. Tara ◽  
Jean Soon Park ◽  
Bridget D. Mathison ◽  
Lindsey L. Kimble ◽  
Boon P. Chew

Purpose: The objective of this study was to assess the protective effects of whey and soy protein supplementation on inflammatory response, oxidative damage and body composition in active female endurance athletes. Methods: Healthy female endurance athletes (18-25 y; n = 18) running at least one hour per day, five days per week were randomly assigned to consume 40 g whey or soy protein daily, in a 6-wk double-blind study. Blood samples were obtained following completion of a one hour run at baseline and wk 6, and analyzed for inflammatory and oxidative biomarkers. DXA scans were completed to determine body composition. Results: Whey protein intervention decreased (P> 0.05) plasma TBARS concentrations, indicating suppressed lipid peroxidation. Supplementation with soy protein had no effect on markers of oxidative damage and inflammation, but decreased (P> 0.05) reduced glutathione indicating a reduction in antioxidant activity. Protein supplementation had no significant effect on body composition. Conclusions: Supplementation with whey protein decreased lipid peroxidation in in female endurance athletes suggesting a potential antioxidative action, while soy protein did not improve biomarkers of oxidative damage and inflammation.

Nutrients ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 2051 ◽  
Author(s):  
Bruna M. Giglio ◽  
Raquel M. Schincaglia ◽  
Alexandre S. da Silva ◽  
Ieda C. S. Fazani ◽  
Paula A. Monteiro ◽  
...  

Protein supplements are usually used to control body weight, however, the impact of protein quality on body fat attenuation is unknown. We investigated the effects of isocaloric isoproteic supplementation of either whey protein (WG) or hydrolysed collagen supplementation (CG) on dietary intake, adiposity and biochemical markers in overweight women. Methods: In this randomized double-blind study, 37 women, [mean ± SE, age 40.6 ± 1.7 year; BMI (kg/m2) 30.9 ± 0.6], consumed sachets containing 40 g/day of concentrated whey protein (25 g total protein, 2.4 leucine, 1.0 valine, 1.5 isoleucine, n = 17) or 38 g/day of hydrolysed collagen (26 g total protein, 1.02 leucine, 0.91 valine, 0.53 isoleucine, n = 20) in the afternoon snack. The compliance was set at >70% of the total theoretical doses. The dietary intake was evaluated by a 6-day food record questionnaire. At the beginning and after eight weeks of follow-up, body composition was evaluated by using dual-energy X-ray absorptiometry and lipid profile, insulin resistance, C-reactive protein, adiponectin, leptin and nesfastin plasma concentrations were analyzed. Results: Supplements were isocaloric and isoproteic. There were no differences in caloric intake (p = 0.103), protein (p = 0.085), carbohydrate (p = 0.797) and lipids (p = 0.109) intakes. The branched chain amino acids (BCAA) (GC: 1.8 ± 0.1 g vs. WG: 5.5 ± 0.3 g, p < 0.001) and leucine intake (CG: 0.1 ± 0.1 g vs. WG: 2.6 ± 0.1 g, p < 0.001) were higher in WG compared to CG. BMI increased in the CG (0.2 ± 1.1 kg/m2, p = 0.044) but did not change in WG. WG decreased the android fat (−0.1 ± 0.3 kg, p = 0.031) and increased nesfatin concentrations (4.9 ± 3.2 ng/mL, p = 0.014) compared to CG. Conclusions: Whey protein supplementation in overweight women increased nesfatin concentrations and could promote increase of resting metabolic rate as part of body composition improvement programs compared to collagen supplementation for 8 weeks. Additionally, our findings suggest that collagen may not be an effective supplement for overweight women who are attempting to alter body composition.


2021 ◽  
pp. 1-27
Author(s):  
Masoome Piri Damaghi ◽  
Atieh Mirzababaei ◽  
Sajjad Moradi ◽  
Elnaz Daneshzad ◽  
Atefeh Tavakoli ◽  
...  

Abstract Background: Essential amino acids (EAAs) promote the process of regulating muscle synthesis. Thus, whey protein that contains higher amounts of EAA can have a considerable effect on modifying muscle synthesis. However, there is insufficient evidence regarding the effect of soy and whey protein supplementation on body composition. Thus, we sought to perform a meta-analysis of published Randomized Clinical Trials that examined the effect of whey protein supplementation and soy protein supplementation on body composition (lean body mass, fat mass, body mass and body fat percentage) in adults. Methods: We searched PubMed, Scopus, and Google Scholar, up to August 2020, for all relevant published articles assessing soy protein supplementation and whey protein supplementation on body composition parameters. We included all Randomized Clinical Trials that investigated the effect of whey protein supplementation and soy protein supplementation on body composition in adults. Pooled means and standard deviations (SD) were calculated using random-effects models. Subgroup analysis was applied to discern possible sources of heterogeneity. Results: After excluding non-relevant articles, 10 studies, with 596 participants, remained in this study. We found a significant increase in lean body mass after whey protein supplementation weighted mean difference (WMD: 0.91; 95% CI: 0.15, 1.67. P= 0.019). Subgroup analysis, for whey protein, indicated that there was a significant increase in lean body mass in individuals concomitant to exercise (WMD: 1.24; 95% CI: 0.47, 2.00; P= 0.001). There was a significant increase in lean body mass in individuals who received 12 or less weeks of whey protein (WMD: 1.91; 95% CI: 1.18, 2.63; P<0.0001). We observed no significant change between whey protein supplementation and body mass, fat mass, and body fat percentage. We found no significant change between soy protein supplementation and lean body mass, body mass, fat mass, and body fat percentage. Subgroup analysis for soy protein indicated there was a significant increase in lean body mass in individuals who supplemented for 12 or less weeks with soy protein (WMD: 1.48; 95% CI: 1.07, 1.89; P< 0.0001). Conclusion: Whey protein supplementation significantly improved body composition via increases in lean body mass, without influencing fat mass, body mass, and body fat percentage.


Author(s):  
Paulina Iwan ◽  
Jan Stepniak ◽  
Malgorzata Karbownik-Lewinska

Abstract. Iodine is essential for thyroid hormone synthesis. Under normal iodine supply, calculated physiological iodine concentration in the thyroid is approx. 9 mM. Either potassium iodide (KI) or potassium iodate (KIO3) are used in iodine prophylaxis. KI is confirmed as absolutely safe. KIO3 possesses chemical properties suggesting its potential toxicity. Melatonin (N-acetyl-5-methoxytryptamine) is an effective antioxidant and free radical scavenger. Study aims: to evaluate potential protective effects of melatonin against oxidative damage to membrane lipids (lipid peroxidation, LPO) induced by KI or KIO3 in porcine thyroid. Homogenates of twenty four (24) thyroids were incubated in presence of either KI or KIO3 without/with melatonin (5 mM). As melatonin was not effective against KI-induced LPO, in the next step only KIO3 was used. Homogenates were incubated in presence of KIO3 (200; 100; 50; 25; 20; 15; 10; 7.5; 5.0; 2.5; 1.25 mM) without/with melatonin or 17ß-estradiol. Five experiments were performed with different concentrations of melatonin (5.0; 2.5; 1.25; 1.0; 0.625 mM) and one with 17ß-estradiol (1.0 mM). Malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) concentration (LPO index) was measured spectrophotometrically. KIO3 increased LPO with the strongest damaging effect (MDA + 4-HDA level: ≈1.28 nmol/mg protein, p < 0.05) revealed at concentrations of around 15 mM, thus corresponding to physiological iodine concentrations in the thyroid. Melatonin reduced LPO (MDA + 4-HDA levels: from ≈0.97 to ≈0,76 and from ≈0,64 to ≈0,49 nmol/mg protein, p < 0.05) induced by KIO3 at concentrations of 10 mM or 7.5 mM. Conclusion: Melatonin can reduce very strong oxidative damage to membrane lipids caused by KIO3 used in doses resulting in physiological iodine concentrations in the thyroid.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3758
Author(s):  
Joanna Smarkusz-Zarzecka ◽  
Lucyna Ostrowska ◽  
Joanna Leszczyńska ◽  
Karolina Orywal ◽  
Urszula Cwalina ◽  
...  

Use of probiotic supplements, the benefits of which have not been proven in sportspeople, is becoming more widespread among runners. The aim of this study was to evaluate the effect of a multi-strain probiotic on body composition, cardiorespiratory fitness and inflammation in the body. The randomised, double-blind study included 66 long-distance runners. The intervention factor was a multi-strain probiotic or placebo. At the initial and final stages of the study, evaluation of body composition and cardiorespiratory fitness was performed and the presence of inflammation determined. In the group of men using the probiotic, an increase in lean body mass (p = 0.019) and skeletal muscle mass (p = 0.022) was demonstrated, while in the group of women taking the probiotic, a decrease in the content of total body fat (p = 0.600) and visceral fat (p = 0.247) was observed. Maximum oxygen consumption (VO2max) increased in women (p = 0.140) and men (p = 0.017) using the probiotic. Concentration of tumour necrosis factor-alpha decreased in women (p = 0.003) and men (p = 0.001) using the probiotic and in women (p = 0.074) and men (p = 0.016) using the placebo. Probiotic therapy had a positive effect on selected parameters of body composition and cardiorespiratory fitness of study participants and showed a tendency to reduce inflammation.


2019 ◽  
Vol 21 (4) ◽  
pp. 397
Author(s):  
Suelen Maiara Medeiros da Silva ◽  
Bárbara Cristovão Carminati ◽  
Valfredo De Almeida Santos Junior ◽  
Pablo Christiano Barboza Lollo

AbstractThe interest of the supplementation market for the soy protein consumption  to optimize physical and metabolic performance after exercise is increasing. However, evidence suggests that the  soy protein ingestion has lower anabolic properties when compared with whey protein. The purpose of this systematic review was to compare the effects of whey protein and soy protein supplementation on the  muscle functions maintenance after exercise. This review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Articles were searched for in the Pubmed database and included studies comparing the effects of soy protein and whey protein consumption on protein synthesis, lean mass gain and oxidative stress reduction in response to endurance or resistance training. Thirteen trials were included in this review. The results showed that the whey protein consumption is superior to that of soy protein with respect to protein synthesis and lean mass gain, but soy protein showed superior results in reducing oxidative stress. Future research comparing both soy and whey protein are needed to define protein source to be used in nutritional interventions to protein synthesis, lean mass gain and oxidative stress in different populations. Keywords: Soybean Proteins. Milk Proteins. Protein Biosynthesis. Hypertrophy. ResumoO interesse do mercado de suplementação pelo consumo de proteína de soja para otimizar o desempenho físico e metabólico após o exercício está aumentando. No entanto, evidências sugerem que a ingestão da proteína de soja tem propriedades anabólicas mais baixas quando comparada à proteína do soro do leite. O objetivo desta revisão sistemática foi comparar os efeitos da suplementação com whey protein e proteína de soja na manutenção das funções musculares após o exercício. Esta revisão foi realizada usando os Itens de Relatório Preferidos para Revisões Sistemáticas e Meta-Análises (PRISMA). Os artigos foram pesquisados na base de dados Pubmed e incluíram estudos comparando os efeitos da proteína de soja e do consumo de proteínas do soro na síntese protéica, ganho de massa magra e redução do estresse oxidativo em resposta ao treinamento de resistência ou resistência. Treze ensaios foram incluídos nesta revisão. Os resultados mostraram que o consumo de proteína de soro é superior ao da proteína de soja em relação à síntese protéica e ao ganho de massa magra, mas a proteína de soja apresentou resultados superiores na redução do estresse oxidativo. Pesquisas futuras comparando a soja e a proteína do soro do leite são necessárias para definir a fonte protéica a ser usada em intervenções nutricionais para a síntese protéica, ganho de massa magra e estresse oxidativo em diferentes populações. Palavras-chave: Proteínas de Soja. Proteínas do Leite. Biossíntese de Proteínas. Hipertrofia.


Sign in / Sign up

Export Citation Format

Share Document