scholarly journals Economic Performance and Nutrient Use Efficiency of Onion (Allium Cepa L.) Under N, K and S Nutrient Combinations in Northern Ethiopia

2019 ◽  
Vol 13 (1) ◽  
pp. 146-155
Author(s):  
Teklay Tesfay ◽  
Selamawit Girmay

Background: Nitrogen (N), potassium (K) and sulfur (S) nutrient elements play an important role in the growth and bulb yield of onion. However, imbalanced nutrient application leads onion producers to get lower onion bulb yield. Hence, the supply of adequate and balanced plant nutrients is important in order to achieve better nutrient utilization as well as proper growth and high yield. Objective: To evaluate the agronomic and economic performance as well as nutrient efficiency of onion in response to the combined application of nitrogen, potassium and sulfur nutrient levels. Method: The field experiment was conducted during 2016/17 to test agronomic, economic and nutrient use efficiency of eighteen treatment groups with the combination of three levels of N, three levels of K and two levels of S nutrient on onion using a randomized complete block design. Results: The combined application of N, K and S nutrient levels appreciably resulted in significant variation not only on growth and bulb yield of onion but also on the economic performance and nutrient use efficiencies. Increased growth and improved bulb yield of onion as well as better nutrient uptakes and recoveries were observed in plots treated with relatively higher NKS rates. However, enhanced Agronomic Efficiency (AE) and Partial Factor Productivity (PFP) were obtained from plots treated with no N and K nutrient applications. Conclusion: Higher growth, improved bulb yield and enhanced nutrient use efficiencies (nutrient concentrations, uptakes and recoveries) were obtained from onion plants cultivated using a relatively higher NKS nutrient level. However, from the economic point of view, onion production using combined application of 69 kg N ha-1 and 15 kg S ha-1 was the most profitable, irrespective of the K level.

Author(s):  
R.K. Singh ◽  
S.R.K. Singh ◽  
Narendra Kumar ◽  
A.K. Singh

Background: The negative effects of continuous use of chemical fertilizers on soil microbiology and agricultural sustainability are well established. The chemical fertilizers load in environment can be minimized by combined application of fertilizers and biofertilizers in crops like pulses which require less fertilizer-N and respond well to the use of biofertilizers. The objectives of the study were to see the effect of different biofertilizers in reduction of total fertilizer use and the response of field pea to combined application of chemical- and bio-fertilizers in terms of growth, yield and NUE.Methods: A field experiment was conducted during 2 consecutive rabi season of 2017-18 and 2018-19 at KVK, Chhatarpur, Jabalpur (Madhya Pradesh), India to evaluate the application of fertilizers and biofertilizers on growth parameter, nodulation, nutrient content and uptake, nutrient use efficiency, yield and economics of field pea. The experiment was laid out in randomized block design with five treatments in four replications. Treatments comprised of Control, Recommended dose (RD) of NPK (20: 60: 20 kg N, P2O5 and K2O/ha, respectively) (RDNPK), RDNPK + seed inoculation with Rhizobium @ 20 g/kg seed (RDNPK +R), RDNPK+R+phosphate solubilizing bacteria @ 20 g each/kg seed (RDNPK + R+PSB) and 75% of RDNPK + R+ PSB + potash solubilizing bacteria @ 5 kg/ha (75% RDNPK+ R+PSB+KSB). All other practices followed as per recommendation for the region and different observations and indices were recorded by following standard procedures.Conclusion: The application of 75% RDNPK+R+PSB+KSB was found best treatment among all others which resulted in highest grain yield (1682 kg/ha), protein content (23.1%), protein yield (388.5 kg/ha), net return (Rs. 46 623/ha) and B:C ratio (2.94). The nutrient use efficiency such as Partial Factor Productivity (PFP), Agronomic efficiency (AE), Physiological Efficiency (PE) and Economic Efficiency (EE) were also higher under combined application of fertilizers and biofertilizers. Thus, 75% RDNPK along with combined application of biofertilizers (R+PSB+KSB) may be applied for higher yield and return from field pea.


EDIS ◽  
2020 ◽  
Vol 2020 (5) ◽  
Author(s):  
Mary Dixon ◽  
Guodong Liu

Tomato is in high demand because of its taste and health benefits. In Florida, tomato is the number one vegetable crop in terms of both acreage and value. Because of its high value and wide acreage, it is important for tomato production to be efficient in its water and nutrient use, which may be improved through fertigation practices. Therefore, the objective of this new 7-page article is to disseminate research-based methods of tomato production utilizing fertigation to enhance yield and nutrient use efficiency. Written by Mary Dixon and Guodong Liu, and published by the UF/IFAS Horticultural Sciences Department.https://edis.ifas.ufl.edu/hs1392


2018 ◽  
Vol 102 (4) ◽  
pp. 8-10
Author(s):  
Fernando García ◽  
Andrés Grasso ◽  
María González Sanjuan ◽  
Adrián Correndo ◽  
Fernando Salvagiotti

Trends over the past 25 years indicate that Argentina’s growth in its grain crop productivity has largely been supported by the depletion of the extensive fertility of its Pampean soils. Long-term research provides insight into sustainable nutrient management strategies ready for wide-scale adoption.


2021 ◽  
Vol 192 ◽  
pp. 103181
Author(s):  
Jagadish Timsina ◽  
Sudarshan Dutta ◽  
Krishna Prasad Devkota ◽  
Somsubhra Chakraborty ◽  
Ram Krishna Neupane ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 959
Author(s):  
Arshad Jalal ◽  
Fernando Shintate Galindo ◽  
Eduardo Henrique Marcandalli Boleta ◽  
Carlos Eduardo da Silva Oliveira ◽  
André Rodrigues dos Reis ◽  
...  

Enrichment of staple food with zinc (Zn) along with solubilizing bacteria is a sustainable and practical approach to overcome Zn malnutrition in human beings by improving plant nutrition, nutrient use efficiency, and productivity. Common bean (Phaseolus vulgaris L.) is one of a staple food of global population and has a prospective role in agronomic Zn biofortification. In this context, we evaluated the effect of diazotrophic bacterial co-inoculations (No inoculation, Rhizobium tropici, R. tropici + Azospirillum brasilense, R. tropici + Bacillus subtilis, R. tropici + Pseudomonas fluorescens, R. tropici + A. brasilense + B. subtilis, and R. tropici + A. brasilense + P. fluorescens) in association with soil Zn application (without and with 8 kg Zn ha−1) on Zn nutrition, growth, yield, and Zn use efficiencies in common bean in the 2019 and 2020 crop seasons. Soil Zn application in combination with R. tropici + B. subtilis improved Zn accumulation in shoot and grains with greater shoot dry matter, grain yield, and estimated Zn intake. Zinc use efficiency, recovery, and utilization were also increased with co-inoculation of R. tropici + B. subtilis, whereas agro-physiological efficiency was increased with triple co-inoculation of R. tropici + A. brasilense + P. fluorescens. Therefore, co-inoculation of R. tropici + B. subtilis in association with Zn application is recommended for biofortification and higher Zn use efficiencies in common bean in the tropical savannah of Brazil.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 643
Author(s):  
Gaia Santini ◽  
Natascia Biondi ◽  
Liliana Rodolfi ◽  
Mario R. Tredici

Cyanobacteria can be considered a promising source for the development of new biostimulants as they are known to produce a variety of biologically active molecules that can positively affect plant growth, nutrient use efficiency, qualitative traits of the final product, and increase plant tolerance to abiotic stresses. Moreover, the cultivation of cyanobacteria in controlled and confined systems, along with their metabolic plasticity, provides the possibility to improve and standardize composition and effects on plants of derived biostimulant extracts or hydrolysates, which is one of the most critical aspects in the production of commercial biostimulants. Faced with these opportunities, research on biostimulant properties of cyanobacteria has undergone a significant growth in recent years. However, research in this field is still scarce, especially as regards the number of investigated cyanobacterial species. Future research should focus on reducing the costs of cyanobacterial biomass production and plant treatment and on identifying the molecules that mediate the biostimulant effects in order to optimize their content and stability in the final product. Furthermore, the extension of agronomic trials to a wider number of plant species, different application doses, and environmental conditions would allow the development of tailored microbial biostimulants, thus facilitating the diffusion of these products among farmers.


Sign in / Sign up

Export Citation Format

Share Document