Behavior of F(R) Gravity Around a Crossing of the Phantom Divide~!2009-08-20~!2009-09-29~!2010-06-03~!

2010 ◽  
Vol 3 (2) ◽  
pp. 13-19 ◽  
Author(s):  
Kazuharu Bamba
Keyword(s):  
2013 ◽  
Vol 28 (38) ◽  
pp. 1350180 ◽  
Author(s):  
M. SHARIF ◽  
ABDUL JAWAD

In this paper, we consider the interacting generalized dark energy with cold dark matter and analyze the behavior of evolution parameter via dark energy and interacting parameters. It is found that the evolution parameter crosses the phantom divide line in most of the cases of integration constants. We also establish the correspondence of scalar field models (quintessence, k-essence and dilaton) with this dark energy model in which scalar fields show the increasing behavior. The scalar potential corresponds to attractor solutions in quintessence case.


2010 ◽  
Vol 25 (29) ◽  
pp. 2469-2481 ◽  
Author(s):  
LUIS P. CHIMENTO ◽  
MÓNICA FORTE ◽  
MARTÍN G. RICHARTE

We study a flat three-brane in the presence of a linear k field with nonzero cosmological constant Λ4. In this model the crossing of the phantom divide (PD) occurs when the k-essence energy density becomes negative. We show that in the high energy regime the effective equation of state has a resemblance of a modified Chaplygin gas while in the low energy regime it becomes linear. We find a scale factor that begins from a singularity and evolves to a de Sitter stable stage while other solutions have a super-accelerated regime and end with a big rip. We use the energy conditions to show when the effective equation of state of the brane-universe crosses the PD.


2011 ◽  
Vol 20 (02) ◽  
pp. 121-131 ◽  
Author(s):  
FRANCESCO CANNATA ◽  
ALEXANDER Y. KAMENSHCHIK

An exact solution describing the evolution of the type Bang-to-Rip with the phantom divide line crossing is constructed in the chameleon cosmology model, based on two independent functions of the scalar field.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Jaime Román-Garza ◽  
Tomás Verdugo ◽  
Juan Magaña ◽  
Verónica Motta

Abstract In this paper, we propose a new phenomenological two parameter parameterization of q(z) to constrain barotropic dark energy models by considering a spatially flat Universe, neglecting the radiation component, and reconstructing the effective equation of state (EoS). This two free-parameter EoS reconstruction shows a non-monotonic behavior, pointing to a more general fitting for the scalar field models, like thawing and freezing models. We constrain the q(z) free parameters using the observational data of the Hubble parameter obtained from cosmic chronometers, the joint-light-analysis Type Ia Supernovae (SNIa) sample, the Pantheon (SNIa) sample, and a joint analysis from these data. We obtain, for the joint analysis with the Pantheon (SNIa) sample a value of q(z) today, $$q_0=-0.51\begin{array}{c} +0.09 \\ -0.10 \end{array}$$q0=-0.51+0.09-0.10, and a transition redshift, $$z_t=0.65\begin{array}{c} +0.19 \\ -0.17 \end{array}$$zt=0.65+0.19-0.17 (when the Universe change from an decelerated phase to an accelerated one). The effective EoS reconstruction and the $$\omega '$$ω′–$$\omega $$ω plane analysis point towards a transition over the phantom divide, i.e. $$\omega =-1$$ω=-1, which is consistent with a non parametric EoS reconstruction reported by other authors.


Author(s):  
T. Vinutha ◽  
V.U.M. Rao ◽  
Molla Mengesha

The present study deals with a spatially homogeneous locally rotationally symmetric (LRS) Bianchi type-I dark energy cosmological model containing one dimensional cosmic string fluid source. The Einstein's field equations are solved by using a relation between the metric potentials and hybrid expansion law of average scale factor. We discuss accelerated expansion of our model through equation of state (ωde) and deceleration parameter (q). We observe that in the evolution of our model, the equation of state parameter starts from matter dominated phase ωde > -1/3 and ultimately attains a constant value in quintessence region (-1 < ωde < -1/3). The EoS parameter of the model never crosses the phantom divide line (ωde = 1). These facts are consistent with recent observations. We also discuss some other physical parameters.


2007 ◽  
Vol 16 (10) ◽  
pp. 1683-1704 ◽  
Author(s):  
FRANCESCO CANNATA ◽  
ALEXANDER Y. KAMENSHCHIK

We discuss the phenomenon of the smooth dynamical gravity induced crossing of the phantom divide line in a framework of simple cosmological models where it appears to occur rather naturally, provided the potential of the unique scalar field has some kind of cusp. The behavior of cosmological trajectories in the vicinity of the cusp is studied in some detail and a simple mechanical analogy is presented. The phenomenon of certain complementarity between the smoothness of the space–time geometry and matter equations of motion is elucidated. We introduce a network of cosmological histories and qualitatively describe some of its properties.


2017 ◽  
Vol 26 (14) ◽  
pp. 1750154 ◽  
Author(s):  
W. El Hanafy ◽  
G. G. L. Nashed

In teleparallel gravity, we apply Lorenz type gauge fixing to cope with redundant degrees of freedom in the vierbein field. This condition is mainly to restore the Lorentz symmetry of the teleparallel torsion scalar. In cosmological application, this technique provides standard cosmology, turnaround, bounce or [Formula: see text]CDM as separate scenarios. We reconstruct the [Formula: see text] gravity which generates these models. We study the stability of the solutions by analyzing the corresponding phase portraits. Also, we investigate Lorenz gauge in the unimodular coordinates, it leads to unify a nonsingular bounce and Standard Model cosmology in a single model, where crossing the phantom divide line is achievable through a finite-time singularity of Type IV associated with a de Sitter fixed point. We reconstruct the unimodular [Formula: see text] gravity which generates the unified cosmic evolution showing the role of the torsion gravity to establish a healthy bounce scenario.


Sign in / Sign up

Export Citation Format

Share Document