scholarly journals Evaluating Operational Performance of Intersections Using SIDRA

2014 ◽  
Vol 8 (1) ◽  
pp. 50-61 ◽  
Author(s):  
Prakash Ranjitkar ◽  
Amin Shahin ◽  
Fasihullah Shirwali

Traffic congestion has significant social, economic and environmental costs associated with it. Efficiency of intersections contributes significantly towards the efficiency of whole urban road networks as they are the main bottlenecks in the system. This paper presents a comparative analysis of the operational efficiency of priority controlled, roundabout and signalised intersections under a range of traffic conditions with different volume and turning ratios using SIDRA software. We used three measures to represent the operational efficiency namely: intersection capacity, average delay and total emissions. The analysis revealed strengths and weaknesses of each intersection types under a range of demand and traffic conditions. At low traffic demand, priority controlled intersections outperformed the other two forms of intersection control. At moderate traffic demand, roundabout performed the best while at high traffic demand, signalised intersections performed the best.

2018 ◽  
Vol 11 (3) ◽  
pp. 57
Author(s):  
Xiao-Yan Cao ◽  
Bing-Qian Liu ◽  
Bao-Ru Pan ◽  
Yuan-Biao Zhang

With the accelerating development of urbanization in China, the increasing traffic demand and large scale gated communities have aggravated urban traffic congestion. This paper studies the impact of communities opening on road network structure and the surrounding road capacity. Firstly, we select four indicators, namely average speed, vehicle flow, average delay time, and queue length, to measure traffic capacity. Secondly, we establish the Wiedemann car-following model, then use VISSIM software to simulate the traffic conditions of surrounding roads of communities. Finally, we take Shenzhen as an example to simulate and compare the four kinds of gated communities, axis, centripetal and intensive layout, and we also analyze the feasibility of opening communities.


2012 ◽  
Vol 209-211 ◽  
pp. 945-951
Author(s):  
Xue Zhong Zhang ◽  
Wei Shui Fei ◽  
Xiao Jun Ning

In the face of increasingly congested urban traffic caused by all sorts of harm, how to solve the traffic congestion problem in the urban is becoming the major hot spot which domestic and foreign experts and scholars pay close attention to and study. This paper in a microscopic angle to analyze the problem -- urban traffic intersection congestion,not in macroscopical city planning, transportation planning, urban traffic demand to discuss. Through exploring the urban road system structure and operational mechanism, development of the automobile overpass is to solve the intersection congestion.


Author(s):  
Saurav Barua

Purpose of Study: The purpose of this study is to investigate the efficiency of bus bay compare to the curbside bus stop in a midblock road segment of Dhaka city. Methodology: Vehicle composition and traffic volume were counted on-peak hours for the midblock of Azimpur road near the existing bus stop. Simulation models were developed in VISSIM, where Model 1 represented the existing road scenario with curbside bus stop, and Model 2 represented the same road segment with a bus bay. Main findings: The simulation result showed that Model 2 outperformed Model 1 due to the presence of bus bay. Comparing Model 1, travel time and delay reduced by varying 1.80% to 12.5% and 6.25% to 100% respectively in Model 2 during the simulation. Similarly, average speed increased by 1.39% and density decreased by 61.29% in model 2. Application of this study: Curbside bus stops result in abrupt halt, disrupt traffic flow, and queuing of the small-sized vehicle behind buses. These bus stops caused traffic congestion and delays in urban roads which can be alleviated by alternatives, such as, bus bay. The novelty of this study: The bus bay is a good alternative to the curbside bus stop, which can improve existing traffic conditions in urban roads.


2020 ◽  
Vol 184 ◽  
pp. 01116
Author(s):  
S. Venkatcharyulu ◽  
V. Mallikarjunareddy

The purpose of the study and analyze traffic vehicular at peak hours, traffic congestion, determine level of service and provide suitable solution to reduce congestion and improve level of service. Hyderabad is a rapidly urbanizing metropolitan city with a population of 68.1lakhs. The increasing population has led to a tremendous increase in vehicular ownership resulting in high motorization rates. Vehicular population in Hyderabad is about 50lakhs. This increase in vehicular population, congestion and hazardous traffic conditions have resulted in traffic congestions, traffic delays, accidents, environ, noise pollution, air pollution and many more. Traffic volume studies are conducted for the counting number vehicles in th study area . . Data obtained from Nizampet road from the Miyapur useful for the identification of Heavy vehicular flow which studied and number of vehicle movement has studied . The data collected from surveys will be used for determination(PHO) and analysing the traffic volume, passenger car unit (PCU), congestion, Peak hour factor and Directional distribution, volume capacity ratio. A report is to be made on the road of 7km, semi urban road Miyapur X road to Nizampet ,(Hyderabad,INDIA) is studied for vehicles count, road conditions, traffic conditions, peak hour volume, pedestrian count where congestion usually happens, manually using tally sheets and recommend some measures for increasing Level of service of the road. The semi urban road has newly grown village which is immediate vicinity to the developed area. Hence the study of This traffic vehicular moment will help the local authorities to take decisions and finally control over movement of the vehicles.


Author(s):  
Joonho Ko ◽  
Hyun Woong Cho ◽  
Jung In Kim ◽  
Hyunmyung Kim ◽  
Young-Joo Lee ◽  
...  

Traffic simulation tools are becoming more popular as complexity and intelligence are growing in transportation systems. The need for more accurate and intelligent traffic modeling is increasing rapidly as transportation systems are having more congestion problems. Although traffic simulation models have been continuously updated to represent various traffic conditions more realistically, most simulation models still have limitations in overcapacity congested traffic conditions. In traditional traffic simulation models, when there is no available space due to traffic congestion, additional traffic demand may never be allowed to enter the network. The objective of this paper is to investigate one possible method to address the issue of unserved vehicles in overcapacity congested traffic conditions using the VISSIM trip chain. The VISSIM trip chain is used for this analysis as it has the advantage of holding a vehicle without eliminating it when traffic congestion prevents its entrance onto a network. This will allow the vehicle to enter when an acceptable gap becomes available on the entry link. To demonstrate the difference between the simulation using standard traffic input and the trip chain method, a sample congested traffic network is built and congested traffic scenarios are created. Also, simulations with different minimum space headway parameters in the priority rules are analyzed to model congested traffic conditions more realistically. This will provide the insight about the sensitivity of the model to this parameter. Based on the analysis conducted it is concluded that, with appropriate calibrations, the trip chain feature in VISSIM has the potentials to be useful in modeling overcapacity congested traffic conditions more realistically.


Electronics ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 722 ◽  
Author(s):  
Jorge Zambrano-Martinez ◽  
Carlos Calafate ◽  
David Soler ◽  
Lenin-Guillermo Lemus-Zúñiga ◽  
Juan-Carlos Cano ◽  
...  

Currently, one of the main challenges that large metropolitan areas must face is traffic congestion. To address this problem, it becomes necessary to implement an efficient solution to control traffic that generates benefits for citizens, such as reducing vehicle journey times and, consequently, environmental pollution. By properly analyzing traffic demand, it is possible to predict future traffic conditions, using this information for the optimization of the routes taken by vehicles. Such an approach becomes especially effective if applied in the context of autonomous vehicles, which have a more predictable behavior, thus enabling city management entities to mitigate the effects of traffic congestion and pollution, thereby improving the traffic flow in a city in a fully centralized manner. This paper represents a step forward towards this novel traffic management paradigm by proposing a route server capable of handling all the traffic in a city, and balancing traffic flows by accounting for present and future traffic congestion conditions. We perform a simulation study using real data of traffic congestion in the city of Valencia, Spain, to demonstrate how the traffic flow in a typical day can be improved using our proposed solution. Experimental results show that our proposed traffic prediction equation, combined with frequent updating of traffic conditions on the route server, can achieve substantial improvements in terms of average travel speeds and travel times, both indicators of lower degrees of congestion and improved traffic fluidity.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 5997
Author(s):  
Suhaib Alshayeb ◽  
Aleksandar Stevanovic ◽  
Nikola Mitrovic ◽  
Branislav Dimitrijevic

Express lanes (ELs) implementation is a proven strategy to deal with freeway traffic congestion. Dynamic toll pricing schemes effectively achieve reliable travel time on ELs. The primary inputs for the typical dynamic pricing algorithms are vehicular volumes and speeds derived from the data collected by sensors installed along the ELs. Thus, the operation of dynamic pricing critically depends on the accuracy of data collected by such traffic sensors. However, no previous research has been conducted to explicitly investigate the impact of sensor failures and erroneous sensors’ data on toll computations. This research fills this gap by examining the effects of sensor failure and faulty detection scenarios on ELs tolls calculated by a dynamic pricing algorithm. The paper’s methodology relies on applying the dynamic toll pricing algorithm implemented in the field and utilizing the fundamental speed-volume relationship to ‘simulate’ the sensors’ reported data. We implemented the methodology in a case study of ELs on Interstate-95 in Southeast Florida. The results have shown that the tolls increase when sensors erroneously report higher than actual traffic demand. Moreover, it has been found that the accuracy of individual sensors and the number of sensors utilized to estimate traffic conditions are critical for accurate toll calculations.


2020 ◽  
pp. 37-46
Author(s):  
Maiyozzi Chairi ◽  
Jihan Melasari ◽  
Rian Afandi

Congestion is a situation or state of stalling or even stopping traffic caused by a large number of vehicles exceeding road capacity. Traffic congestion is a big problem that is often faced in Indonesia, especially in big cities. This study aims to analyze the factors that cause congestion in Jalan Gajah Mada Gunung Pangilun, Padang City. This research is quantitative descriptive by calculating traffic volume and the causes of traffic jams. And following the Urban Road Capacity Guidelines (PKJP, 2014). Based on the results of the field survey in Road Capacity (C) 3340 pcu / hour, Total Traffic Volume (Q) 1446 pcu / hour and Saturation Degree (DJ) 0.43 pcu / hour, so that the Road Service Level (LOS) type can be obtained B in the sense that traffic flow is stable, the speed starts to be influenced by traffic conditions, but can still be chosen according to the will of the driver. The highest level of congestion occurs on Wednesday, December 11, 2019 (from the day surveyed).


Author(s):  
Jingyi Wang ◽  
Guohua Song ◽  
Lei Yu ◽  
Hongyu Lu ◽  
Jianping Sun ◽  
...  

The waste of fuel causing by traffic congestion is a challenge faced by urban traffic management authorities and travelers. At the same time, massive traffic data allows high-resolution understanding of on-road operating conditions. The development of an algorithm to estimate total fuel consumption from primary traffic condition indices, for example, network average speed, will simplify the evaluation of fuel consumption from the management perspective and guide strategy at the local area level. The objective of this study is to develop a macroscopic relationship between total fuel consumption and the network average speed for an urban road network. Floating car data (FCD) covering 13 weekdays was collected in the field in Beijing, China. FCD from 10 ordinary weekdays are used to develop a quantitative model to define the macroscopic relationship between total fuel consumption and network average speed. The model is then validated by the FCD of the other three weekdays when the traffic demand is low. The average of the resultant absolute relative errors from the validation is found to be 4.65%, which indicates a reasonably high reliability of the developed model under various traffic conditions. The facility- and speed-specific distributions of vehicle kilometers traveled (VKT) are analyzed to explain the macroscopic relationship. The result indicates that the link VKT distribution at different speeds varies greatly when the traffic became congested on expressways. The link VKT distributions are similar for different traffic conditions on arterials and collectors.


Author(s):  
Rajesh Kumar Gupta ◽  
L. N. Padhy ◽  
Sanjay Kumar Padhi

Traffic congestion on road networks is one of the most significant problems that is faced in almost all urban areas. Driving under traffic congestion compels frequent idling, acceleration, and braking, which increase energy consumption and wear and tear on vehicles. By efficiently maneuvering vehicles, traffic flow can be improved. An Adaptive Cruise Control (ACC) system in a car automatically detects its leading vehicle and adjusts the headway by using both the throttle and the brake. Conventional ACC systems are not suitable in congested traffic conditions due to their response delay.  For this purpose, development of smart technologies that contribute to improved traffic flow, throughput and safety is needed. In today’s traffic, to achieve the safe inter-vehicle distance, improve safety, avoid congestion and the limited human perception of traffic conditions and human reaction characteristics constrains should be analyzed. In addition, erroneous human driving conditions may generate shockwaves in addition which causes traffic flow instabilities. In this paper to achieve inter-vehicle distance and improved throughput, we consider Cooperative Adaptive Cruise Control (CACC) system. CACC is then implemented in Smart Driving System. For better Performance, wireless communication is used to exchange Information of individual vehicle. By introducing vehicle to vehicle (V2V) communication and vehicle to roadside infrastructure (V2R) communications, the vehicle gets information not only from its previous and following vehicle but also from the vehicles in front of the previous Vehicle and following vehicle. This enables a vehicle to follow its predecessor at a closer distance under tighter control.


Sign in / Sign up

Export Citation Format

Share Document