scholarly journals Identification and “in silico” Structural Analysis of the Glutamine-rich Protein Qrp (YheA) in Staphylococcus Aureus

2019 ◽  
Vol 12 (1) ◽  
pp. 18-29
Author(s):  
Javier Escobar-Perez ◽  
Katterine Ospina-Garcia ◽  
Zayda Lorena Corredor Rozo ◽  
Ricaurte Alejandro Marquez-Ortiz ◽  
Jaime E Castellanos ◽  
...  

Background: YlbF and YmcA are two essential proteins for the formation of biofilm, sporulation, and competence in Bacillus subtilis. In these two proteins, a new protein domain called com_ylbF was recently discovered, but its role and protein function has not yet been established. Objective: In this study, we identified and performed an “in silico” structural analysis of the YheA protein, another com_ylbF-containing protein, in the opportunistic pathogen Staphylococcus aureus. Methods: The search of the yheA gene was performed using BLAST-P and tBLASn algorithms. The three-dimensional (3D) models of YheA, as well as YlbF and YmcA proteins, were built using the I-TASSER and Quark programs. The identification of the native YheA in Staphylococcus aureus was carried out through chromatography using the FPLC system. Results: We found that YheA protein is more widely distributed in Gram-positive bacteria than YlbF and YmcA. Two new and important characteristics for YheA and other com_ylbF-containing proteins were found: a highly conserved 3D structure and the presence of a putative conserved motif located in the central region of the domain, which could be involved in its function. Additionally, we established that Staphylococcus aureus expresses YheA protein in both planktonic growth and biofilm. Finally, we suggest renaming YheA as glutamine-rich protein (Qrp) in S. aureus. Conclusion: The Grp (YheA), YlbF, and YmcA proteins adopt a highly conserved three-dimensional structure, harboring a protein-specific putative motif within the com_ylbF domain, which possibly favors the interaction with their substrates. Finally, Staphylococcus aureus expresses the Grp (YheA) protein in both planktonic and biofilm growth.

Biomolecules ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 45 ◽  
Author(s):  
Ahmed H. Korany ◽  
Adel Abouhmad ◽  
Walid Bakeer ◽  
Tamer Essam ◽  
Magdy A. Amin ◽  
...  

Mycobacteriophage endolysins have emerged as a potential alternative to the current antimycobacterial agents. This study focuses on mycolylarabinogalactan hydrolase (LysB) enzymes of the α/β-hydrolase family, which disrupt the unique mycolic acid layer of mycobacterium cell wall. Multiple sequence alignment and structural analysis studies showed LysB-D29, the only enzyme with a solved three-dimensional structure, to share several common features with esterases (lacking lid domain) and lipases (acting on long chain lipids). Sequence and structural comparisons of 30 LysB homology models showed great variation in domain organizations and total protein length with major differences in the loop-5 motif harboring the catalytic histidine residue. Docking of different p-nitrophenyl ligands (C4-C18) to LysB-3D models revealed that the differences in length and residues of loop-5 contributed towards wide diversity of active site conformations (long tunnels, deep and superficial funnels, shallow bowls, and a narrow buried cave) resembling that of lipases, cutinases, and esterases. A set of seven LysB enzymes were recombinantly produced; their activity against p-nitrophenyl esters could be related to their active site conformation and acyl binding site. LysB-D29 (long tunnel) showed the highest activity with long chain p-nitrophenyl palmitate followed by LysB-Omega (shallow bowl) and LysB-Saal (deep funnel).


2021 ◽  
Author(s):  
Julita Gumna ◽  
Maciej Antczak ◽  
Ryszard Walenty Adamiak ◽  
Janusz Marek Bujnicki ◽  
Shi-Jie Chen ◽  
...  

The outbreak of the COVID-19 pandemic has led to intensive studies of both the structure and replication mechanism of SARS-CoV-2. In spite of some secondary structure experiments being carried out, the 3D structure of the key functional regions of the viral RNA has not yet been well understood. At the beginning of COVID-19 breakout, the RNA-Puzzles community attempted to envisage the three-dimensional structure of 5′- and 3′-Un-Translated Regions (UTRs) of the SARS-CoV-2 genome. Here, we report the results of this prediction challenge, presenting the methodologies developed by six participating groups and discussing 100 RNA 3D models (60 models of 5′-UTR and 40 of 3′-UTR) predicted through applying both human experts and automated server approaches. We describe the original protocol for the reference-free comparative analysis of RNA 3D structures designed especially for this challenge. We elaborate on the deduced consensus structure and the reliability of the predicted structural motifs. All the computationally simulated models, as well as the development and the testing of computational tools dedicated to 3D structure analysis, are available for further study.


Author(s):  
Harish Babu Kolla ◽  
Chakradhar Tirumalasetty ◽  
Krupanidhi Sreerama ◽  
Vijaya Sai Ayyagari

Abstract Background TSST-1 is a secretory and pyrogenic superantigen that is being responsible for staphylococcal mediated food poisoning and associated clinical manifestations. It is one of the main targets for the construction of vaccine candidates against Staphylococcus aureus. Most of the vaccines have met failure due to adverse reactions and toxicity reported during late clinical studies. To overcome this, an immunoinformatics approach is being used in the present study for the design of a multi-epitope vaccine to circumvent the problems related to toxicity and allergenicity. Results In this study, a multi-epitope vaccine against Staphylococcus aureus targeting TSST-1 was designed through an immunoinformatics approach. B cell and T cell epitopes were predicted in silico and mapped with linkers to avoid junctional immunogenicity and to ensure the efficient presentation of exposed epitopes through HLA. β-defensin and PADRE were adjusted at the N-terminal end of the final vaccine as adjuvants. Physiochemical parameters, antigenicity, and allergenicity of the vaccine construct were determined with the help of online servers. The three-dimensional structure of the vaccine protein was predicted and validated with various tools. The affinity of the vaccine with TLR-3 was studied through molecular docking studies and the interactions of two proteins were visualized using LigPlot+. The vaccine was successfully cloned in silico into pET-28a (+) for efficient expression in E. coli K12 system. Population coverage analysis had shown that the vaccine construct can cover 83.15% of the global population. Immune simulation studies showed an increase in the antibody levels, IL-2, IFN-γ, TGF-β, B cell, and T cell populations and induced primary, secondary, and tertiary immune responses. Conclusion Multi-epitope vaccine designed through a computational approach is a non-allergic and non-toxic antigen. Preliminary in silico reports have shown that this vaccine could elicit both B cell and T cell responses in the host as desired.


Author(s):  
YU ZHANG ◽  
YU PING GUAN ◽  
RUI XIN HUANG

AbstractOcean striations are composed of alternating quasi-zonal band-like flows; this kind of organized structure of currents be found in all world’s oceans and seas. Previous studies have mainly been focused on the mechanisms of their generation and propagation. This study uses the spatial high-pass filtering to obtain the three-dimensional structure of ocean striations in the North Pacific in both the z-coordinate and σ-coordinate based on 10-yr averaged SODA3 data. First, we identify an ideal-fluid potential density domain where the striations are undisturbed by the surface forcing and boundary effects. Second, using the isopycnal layer analysis, we show that on isopycnal surfaces the orientations of striations nearly follow the potential vorticity (PV) contours, while in the meridional-vertical plane the central positions of striations are generally aligned with the latitude of zero gradient of the relative PV. Our analysis provides a simple dynamical interpretation and better understanding for the role of ocean striations.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mark Terasaki ◽  
Jason Cory Brunson ◽  
Justin Sardi

AbstractThe capillary network of the kidney glomerulus filters small molecules from the blood. The glomerular 3D structure should help to understand its function, but it is poorly characterized. We therefore devised a new approach in which an automated tape collecting microtome (ATUM) was used to collect 0.5 μm thick serial sections from fixed mouse kidneys. The sections were imaged by scanning electron microscopy at ~ 50 nm/pixel resolution. With this approach, 12 glomeruli were reconstructed at an x–y–z resolution ~ 10 × higher than that of paraffin sections. We found a previously undescribed no-cross zone between afferent and efferent branches on the vascular pole side; connections here would allow blood to exit without being adequately filtered. The capillary diameters throughout the glomerulus appeared to correspond with the amount of blood flow within them. The shortest path (minimum number of branches to travel from afferent to efferent arterioles) is relatively independent of glomerular size and is present primarily on the vascular pole size. This suggests that new branches and longer paths form on the urinary pole side. Network analysis indicates that the glomerular network does not form by repetitive longitudinal splitting of capillaries. Thus the 3D structure of the glomerular capillary network provides useful information with which to understand glomerular function. Other tissue structures in the body may benefit from this new three dimensional approach.


Sequencing ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Amitava Moulick ◽  
Debashis Mukhopadhyay ◽  
Shonima Talapatra ◽  
Nirmalya Ghoshal ◽  
Sarmistha Sen Raychaudhuri

Plantago ovata Forsk is a medicinally important plant. Metallothioneins are cysteine rich proteins involved in the detoxification of heavy metals. Molecular cloning and modeling of MT from P. ovata is not reported yet. The present investigation will describe the isolation, structure prediction, characterization, and expression under copper stress of type 2 metallothionein (MT2) from this species. The gene of the protein comprises three exons and two introns. The deduced protein sequence contains 81 amino acids with a calculated molecular weight of about 8.1 kDa and a theoretical pI value of 4.77. The transcript level of this protein was increased in response to copper stress. Homology modeling was used to construct a three-dimensional structure of P. ovata MT2. The 3D structure model of P. ovata MT2 will provide a significant clue for further structural and functional study of this protein.


2020 ◽  
Vol 36 (11) ◽  
pp. 3372-3378
Author(s):  
Alexander Gress ◽  
Olga V Kalinina

Abstract Motivation In proteins, solvent accessibility of individual residues is a factor contributing to their importance for protein function and stability. Hence one might wish to calculate solvent accessibility in order to predict the impact of mutations, their pathogenicity and for other biomedical applications. A direct computation of solvent accessibility is only possible if all atoms of a protein three-dimensional structure are reliably resolved. Results We present SphereCon, a new precise measure that can estimate residue relative solvent accessibility (RSA) from limited data. The measure is based on calculating the volume of intersection of a sphere with a cone cut out in the direction opposite of the residue with surrounding atoms. We propose a method for estimating the position and volume of residue atoms in cases when they are not known from the structure, or when the structural data are unreliable or missing. We show that in cases of reliable input structures, SphereCon correlates almost perfectly with the directly computed RSA, and outperforms other previously suggested indirect methods. Moreover, SphereCon is the only measure that yields accurate results when the identities of amino acids are unknown. A significant novel feature of SphereCon is that it can estimate RSA from inter-residue distance and contact matrices, without any information about the actual atom coordinates. Availability and implementation https://github.com/kalininalab/spherecon. Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


Soil Systems ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 13 ◽  
Author(s):  
Stella Gribbe ◽  
Gesche Blume-Werry ◽  
John Couwenberg

Belowground plant structures are inherently difficult to observe in the field. Sedge peat that mainly consists of partly decayed roots and rhizomes offers a particularly challenging soil matrix to study (live) plant roots. To obtain information on belowground plant morphology, research commonly relies on rhizotrons, excavations, or computerized tomography scans (CT). However, all of these methods have certain limitations. For example, CT scans of peat cores cannot sharply distinguish between plant material and water, and rhizotrons do not provide a 3D structure of the root system. Here, we developed a low-cost approach for 3D visualization of the root system in peat monoliths. Two large diameter (20 cm) peat cores were extracted, frozen and two smaller peat monoliths (47 × 6.5 × 13 cm) were taken from each core. Slices of 0.5 mm or 1 mm were cut from one of the frozen monoliths, respectively, using a paper block cutter and the freshly cut surface of the monolith was photographed after each cut. A 3D model of the fresh (live) roots and rhizomes was reconstructed from the resulting images of the thinner slices based on computerized image analysis, including preprocessing, filtering, segmentation and 3D visualization using the open-source software Fiji, Drishti, and Ilastik. Digital volume measurements on the models produced similar data as manual washing out of roots from the adjacent peat monoliths. The constructed 3D models provide valuable insight into the three-dimensional structure of the root system in the peat matrix.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1791-C1791
Author(s):  
Rajabrata Bhunya ◽  
Suman Nandy ◽  
Alpana Seal

In most of the pathogenic organisms including Plasmodium falciparum, isoprenoids are synthesized via MEP (MethylErythritol 4-Phosphate) pathway. LytB is the last enzyme of this pathway which catalyzes the conversion of (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate (HMBPP) into the two isoprenoid precursors: isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP). Since the MEP pathway is not used by humans, it represents an attractive target for the development of new antimalarial compounds or inhibitors. Here a systematic in-silico study has been conducted to get an insight into the structure of Plasmodium lytB as well as its affinities towards different inhibitors. We used comparative modeling technique to predict the three dimensional (3D) structure of Plasmodium LytB taking E. Coli LytB protein (PDB ID: 3KE8) as template and the model was subsequently refined through molecular dynamics (MD) simulation. A large ligand dataset containing diphospate group was subjected for virtual screening against the target using GOLD 5.2 program. Considering the mode of binding and affinities, 17 leads were selected on basis of binding energies in comparison to its substrate HMBPP (Gold.Chemscore.DG: -20.9734 kcal/mol). Among them, 5 were discarded because of their inhibitory activity towards other human enzymes. The rest 12 potential leads carry all the properties of any "drug like" molecule and the knowledge of Plasmodium LytB inhibitory mechanism which can provide valuable support for the antimalarial inhibitor design in future.


Sign in / Sign up

Export Citation Format

Share Document