The Potency of Wound Healing of Nanogel Containing Mikania Micrantha Leaves Extract in Hyperglycemic Rats

2021 ◽  
Vol 09 ◽  
Author(s):  
Imam Bagus Sumantri ◽  
Ismayadi ◽  
Lolyta Fitri Mustanti

Introduction: Mikania micrantha has been used traditionally for wound dressings and promoted the healing of sores. This is due to the content of alkaloids and terpenoids/steroids compounds. Hyperglycemic is a good medium for bacterial growth and inhibits the wound healing process. Purpose: This study aimed to determine the wound healing of nanogels containing MMLE in hyperglycemic rats, as a model for diabetic wounds. Methods: Mikania micrantha leaves were extracted with the maceration method using ethanol 96% in 5 days. Carbopol 940 was used as the gelling agent. The parameters observed during the physical testing of nanogels were organoleptic, homogeneity, pH, and size of the particle. Antibacterial activity was tested on Staphylococcus aureus, Staphylococcus epidermis, Escherichia coli, and wound healing activity in hyperglycemic rats for 14 days observation. Diabetic wound healing was treated with 4 groups (P1, P2, K1, K2). Data were analyzed using SPSS. Results: Nanogel showed homogeneity, dark green color, transparency, pH 6.1± 0.1, and particle size range in 255-456 nm. Inhibition zone of antibacterial testing i.e. Staphylococcus aureus, Staphylococcus epidermis, and Escherichia coli was 10.57 ± 0.26 mm; 9.73 ± 0.21 mm; 8.4 ± 0.1 mm. The percentage of diabetic wound healing was in the range of 92.79±3.81% to 94.08 ± 2.33% for 14 days of observation. Conclusion: MMLE nanogels have the potential as a treatment for diabetic wound healing.

2021 ◽  
Vol 13 (585) ◽  
pp. eabe4839
Author(s):  
Simon Matoori ◽  
Aristidis Veves ◽  
David J. Mooney

Current treatment options for foot ulcers, a serious and prevalent complication of diabetes, remain nonspecific. In this Perspective, we present recent advances in understanding the pathophysiology of diabetic wound healing and the emergence of previously unidentified targets. We discuss wound dressings tailored to the diabetic wound environment currently under development.


2021 ◽  
Vol 19 ◽  
pp. 228080002110549
Author(s):  
Michael Rodrigues ◽  
Thilagavati Govindharajan

A hydrocellular functional material as a wound dressing is developed and it is found to be superior in its efficacy as compared to some of the comparator controls in diabetic wound healing studies. A study on wound contraction and Histopathological analysis is done in rats. The efficacy of the dressing is comparable to the established wound dressings like Carboxymethyl cellulose alginate dressings and autolytic enzyme based hydrogel. It is found to be superior to Polyhexamethylene biguanide dressing used as reference controls in this study. The reason for good wound healing performance of the dressing can be attributed to a combined property of effective exudates management and broad spectrum antimicrobial effect. The concept of functional hydro cellular material has shown good results due to the excellent balance of exudates pickup and drying it out. This ensures moist wound healing conditions on the wound. Because of its porous nature it allows good air flow and gaseous exchange in the structure. The cationic sites created on the surface of the dressing ensure a good antimicrobial action on the exudates in the dressing. It reduces the infection load on the wound. The nonleaching property of the dressing also helps in preventing the generation of more resistant and mutant strains of the microbes. The developed dressing can be used as a relatively durable long lasting dressing for wound management in diabetic wounds. The need of repetitive wound dressing changes can be brought down with this concept of dressing. It is not only cost effective in terms of its material cost but also is a cost effective solution when entire wound management cost is considered. Such novel wound dressing material can change the quality of life of diabetic wound patients especially in developing world, where access to functional advanced wound care dressings is limited.


Author(s):  
Swathi Balaji ◽  
Abdul Q. Sheikh ◽  
Lee Morris ◽  
Foong Y. Lim ◽  
Timothy M. Crombleholme ◽  
...  

Chronic ulcers are a leading cause of morbidity in diabetic patients. Diabetes is associated with major changes in the wound microenvironment and disruption of normal wound healing process, characterized by a prolonged inflammatory phase with elevated levels of wound proteases and increased degradation of extracellular matrix (ECM) components [1]. This impedes wound healing due to a lack of provisional matrix, impaired recruitment and survival of endothelial (EC) and endothelial precursor (EPC) cells, and insufficient neovascularization, resulting in delayed healing. Therefore, strategies focused on restoring the diabetic wound microenvironment by decreasing ECM degradation and promoting neovascularization are promising for development of new therapies to treat chronic diabetic ulcers.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Hadeel A. Al-Rawaf ◽  
Sami A. Gabr ◽  
Ahmad H. Alghadir

Background. Circulating micro-RNAs are differentially expressed in various tissues and could be considered as potential regulatory biomarkers for T2DM and related complications, such as chronic wounds. Aim. In the current study, we investigated whether ginger extract enriched with [6]-gingerol-fractions either alone or in combination with vitamin D accelerates diabetic wound healing and explores underlying molecular changes in the expression of miRNA and their predicted role in diabetic wound healing. Methods. Diabetic wounded mice were treated with [6]-gingerol-fractions (GF) (25 mg/kg of body weight) either alone or in combination with vitamin D (100 ng/kg per day) for two weeks. Circulating miRNA profile, fibrogenesis markers, hydroxyproline (HPX), fibronectin (FN), and collagen deposition, diabetic control variables, FBS, HbA1c, C-peptide, and insulin, and wound closure rate and histomorphometric analyses were, respectively, measured at days 3, 6, 9, and 15 by RT–PCR and immunoassay analysis. Results. Treatment of diabetic wounds with GF and vitamin D showed significant improvement in wound healing as measured by higher expression levels of HPX, FN, collagen, accelerated wound closure, complete epithelialization, and scar formation in short periods (11-13 days, (P<0.01). On a molecular level, three circulating miRNAs, miR-155, miR-146a, and miR-15a, were identified in diabetic and nondiabetic skin wounds by PCR analysis. Lower expression in miR-155 levels and higher expression of miR-146a and miR-15a levels were observed in diabetic skin wounds following treatment with gingerols fractions and vitamin D for 15 days. The data showed that miRNAs, miR-146a, miR-155, and miR-15a, correlated positively with the expression levels of HPX, FN, and collagen and negatively with FBS, HbA1c, C-peptide, and insulin in diabetic wounds following treatment with GF and /or vitamin D, respectively. Conclusion. Treatment with gingerols fractions (GF) and vitamin D for two weeks significantly improves delayed diabetic wound healing. The data showed that vitamin D and gingerol activate vascularization, fibrin deposition (HPX, FN, and collagen), and myofibroblasts in such manner to synthesize new tissues and help in the scar formation. Accordingly, three miRNAs, miR-155, miR-146a, and miR-15, as molecular targets, were identified and significantly evaluated in wound healing process. It showed significant association with fibrin deposition, vascularization, and reepithelialization process following treatment with GF and vitamin D. It proposed having anti-inflammatory action and promoting new tissue formation via vascularization process during the wound healing. Therefore, it is very interesting to consider miRNAs as molecular targets for evaluating the efficiency of nondrug therapy in the regulation of wound healing process.


2021 ◽  
Vol 18 ◽  
Author(s):  
Saima Tufail ◽  
Muhammad Irfan Siddique ◽  
Muhammad Sarfraz ◽  
Muhammad Farhan Sohail ◽  
Muhammad Nabeel Shahid ◽  
...  

Introduction: The pleiotropic effects of statins are recently explored for wound healing through angiogenesis and lymph-angiogenesis that could be of great importance in diabetic wounds. Aim: Aim of the present study is to fabricate nanofilm embedded with simvastatin loaded chitosan nanoparticles (CS-SIM-NPs) has been reported herein to explore the efficacy of SIM in diabetic wound healing. Methods: The NPs, prepared via ionic gelation, were 173nm ± 2.645 in size with a zeta potential -0.299 ± 0.009 and PDI 0.051 ± 0.088 with excellent encapsulation efficiency (99.97%). The optimized formulation (CS: TPP, 1:1) that exhibited the highest drug release (91.64%) was incorporated into polymeric nanofilm (HPMC, Sodium alginate, PVA), followed by in vitro characterization. The optimized nanofilm was applied to the wound created on the back of diabetes-induced (with alloxan injection 120 mg/kg) albino rats. Results: The results showed significant (p < 0.05) improvement in the wound healing process compared to the diabetes-induced non-treated group. The results highlighted the importance of nanofilms loaded with SIM-NPs in diabetic wound healing through angiogenesis promotion at the wound site. Conclusion: Thus, CS-SIM-NPs loaded polymeric nanofilms could be an emerging diabetic wound healing agent in the industry of nanomedicines.


2018 ◽  
pp. 116-124
Author(s):  
Damsir Eni Ungke

Diabetic injury is one form of chronic complications. Diabetes mellitus is an open wound on the skin surface that can be accompanied by local tissue death. Diabetes mellitus patients at risk of 29 times the occurrence of diabetic injuries. Diabetic injury is an open wound on the skin surface caused by the presence of macroangiopathy resulting in vascular insusifiensi and neuropati. Organs most often affected by diabetes mellitus complications include the leg blood vessels. Disorders of blood vessels that often occur in diabetes that is on the legs and feet. This study aims to determine the effectiveness of wound care using modern bandage (Metcofazin) on diabetic wound healing process at Emergency Hospital (IGD) Arifin Nu'mang Hospital of Sidrap Regency, and to know the effectiveness of wound care using conventional dressing (normal saline saline NaCl 0 , 9% and gauze bandage) to diabetic wound healing process at Emergency Injury Installation (IGD) Arifin Nu'mang Hospital of Sidrap Regency. The type of research used by the researcher is qualitative research with case study approach. This research has been conducted on 21 November until December 21, 2014 at the Emergency Installation (IGD) Arifin Nu'mang Hospital, Sidrap Regency. Samples used in this study are patients with diabetic injuries at Arifin Nu'mang Hospital Sidrap District with sampling technique by puposive sampling. The results of this study indicate that the treatment of luk a using a modern bandage (metcofazine) is more effective than wound care using conventional dressing (normal saline 0.9% NaCl saline and gauze dressing) on ​​diabetic wound healing process at Arifin Nu'mang Hospital Sidrap Hospital.


2019 ◽  
Vol 7 (6) ◽  
pp. 940-952 ◽  
Author(s):  
Weihan Xie ◽  
Xiaoling Fu ◽  
Fengling Tang ◽  
Yunfei Mo ◽  
Jun Cheng ◽  
...  

Many pathophysiologic conditions can interrupt the normal wound healing process and lead to chronic wounds due to the arrest of macrophages in their inflammatory phenotype.


2020 ◽  
Vol 133 (19) ◽  
pp. jcs235838
Author(s):  
Peilang Yang ◽  
Xiqiao Wang ◽  
Di Wang ◽  
Yan Shi ◽  
Meng Zhang ◽  
...  

ABSTRACTBesides regulating glucose levels, insulin has been reported to participate actively in many other functions, including modulating inflammatory reactions. In this study we investigated how topical insulin application would affect the diabetic wound healing process. We found that the excessive expression of insulin-degrading enzyme led to insufficient insulin levels in diabetic skin during wound healing, which ultimately reduced the recovery rate of diabetic wounds. We confirmed that topical insulin application could reverse the impaired inflammation reaction in the diabetic wound environment and promote healing of diabetic wounds. Our study revealed that insulin promoted apoptosis of neutrophils and subsequently triggered polarization of macrophages. Both in vivo and in vitro studies verified that insulin re-established phagocytosis function and promoted the process of phagocytosis-induced apoptosis in neutrophils. Furthermore, we found that insulin treatment also promoted efferocytosis of the apoptosed neutrophils by macrophages, and thus induced macrophages to change their polarization state from M1 to M2. In conclusion, our studies proved that the exogenous application of insulin could improve diabetic wound healing via the restoration of the inflammatory response.


2021 ◽  
Vol 12 (7) ◽  
pp. 1-7
Author(s):  
Maria Saifee ◽  
Pragati Bhaske ◽  
Reshma Toshniwal

The Simvastatin loaded microemulsion based gel was formulated and in-vitro evaluation was done for the treatment of diabetic wound healing. Simvastatin is BCS class II drug which promotes wound healing by increasing the production of vascular endothelial growth factor (VEGF). Microemulsions (MEs) are oil and water colloidal system stabilized by the mixture of surfactant and co-surfactant offering enhance skin permeability for both hydrophobic and hydrophilic drugs. At first, microemulsion (ME) was prepared by water titration method and the existence of ME region was determined using pseudo-ternary phase diagram. Formulations were prepared using oil (oleic acid), Tween 80 and PEG 400 as surfactant and co-surfactant. Optimization of formulation was done using 32 factorial designs. Carbopol 940 was used as gelling agent for preparing microemulsion gel. The formulations were evaluated for physical appearance globule size, polydispersity index, zeta potential, percent transmittance, thermodynamic stability, dilution test, drug content, and in vitro drug release. The optimized formulation of ME showed average globule size of 151 nm and the optimized ME gel had a homogeneous texture, showed good spreadability and in vitro drug release. The present study indicates the simvastatin loaded microemulsion gel could act as promising vehicle for topical drug delivery of drug for diabetic wound healing.


Sign in / Sign up

Export Citation Format

Share Document