Structural Simulation and Strength Analysis for Trailer Bogie Frame of High-Speed Train Based on CATIA and ANSYS Workbench

2020 ◽  
Vol 13 (3) ◽  
pp. 266-279
Author(s):  
Junguo Wang ◽  
Minqiang Ren ◽  
Rui Sun ◽  
Yang Yang ◽  
Yongxiang Zhao

Background: As a key component of the rail transit vehicle, the railway bogie greatly affects the dynamic performance, reliability, and safety of the high-speed rail vehicle. In this paper, the structural strength of a typical trailer bogie frame is evaluated and its strength and dynamic requirements are verified. In addition, various patents on bogie structural strength have also been discussed in this paper. Objective: The study aimed to evaluate and verify the rationality of the bogie frame structure design with static strength and dynamic characteristics. Methods: A three-dimensional model of the trailer bogie frame was built by CATIA V5, and then, a finite element model of the frame was analyzed by ANSYS Workbench. Bogie frame loads, static strengths and dynamic characteristics of the frame under different conditions (straight, curve, braking and abnormal) were calculated based on its strength and design standards. Results: According to the requirement stress and dynamics standard, the maximum stress of the bogie frame was observed to be in the allowable stress value of the frame material, and the dynamic performance of the bogie model meets the design standards. Conclusion: The structural strength of the proposed bogie frame is reasonable, and the static strength and dynamic characteristics of the proposed bogie model are in accordance with the design requirements of the railway vehicle.

2006 ◽  
Vol 321-323 ◽  
pp. 1593-1596 ◽  
Author(s):  
Chan Kyoung Park ◽  
Ki Whan Kim ◽  
Jin Yong Mok ◽  
Young Guk Kim ◽  
Seog Won Kim

The Korean High Speed Train (KHST) has been tested on the Kyongbu high speed line and the Honam conventional line since 2002. A data acquisition system was developed to test and prove the dynamic performance of the KHST, and the system has been found to be very efficient in acquiring multi-channel data from accelerometers located all over the train. Also presented in this paper is an analysis procedure which is simple and efficient in analyzing the acceleration data acquired during the on-line test of the KHST. The understanding of system vibration mode for a railway vehicle is essential to evaluate the characteristics of a dynamic system and to diagnose the dynamic problems of the vehicle system during tests and operations. Methods based on homogeneous linear systems are not realistic because real systems have nonlinear characteristics and are strongly dependent on environmental conditions. In this paper an efficient method of vibration analysis has been proposed and applied for the KHST to evaluate its vibration mode characteristics. The results show that this method is suitable to estimate the system vibration modes of the KHST.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Chen Wang ◽  
Shihui Luo ◽  
Ziqiang Xu ◽  
Chang Gao ◽  
Weihua Ma

In order to find out the reason for the bogie frame instability alarm in the high-speed railway vehicle, the influence of wheel tread profile of the unstable vehicle was investigated. By means of wheel-rail contact analysis and dynamics simulation, the effect of tread wear on the bogie frame lateral stability was studied. The result indicates that the concave wear of tread is gradually aggravated with the increase of operation mileage; meanwhile the wheel-rail equivalent conicity also increases. For the rail which has not been grinded for a long time, the wear of gauge corner and wide-worn zone is relatively severe; the matching equivalent conicity is 0.31-0.4 between the worn rail and the concave-worn-tread wheel set. The equivalent conicity between the grinded rail and the concave-worn tread is below 0.25; the equivalent conicities are always below 0.1 between the reprofiled wheel set and various rails. The result of the line test indicates that the lateral acceleration of bogie frame corresponding to the worn wheel-rail can reach 8.5m/s2, and the acceleration after the grinding is reduced below 4.5m/s2. By dynamics simulation, it turns out that the unreasonable wheel-rail matching relationship is the major cause of the bogie frame lateral alarm. With the tread-concave wear being aggravated, the equivalent conicity of wheel-rail matching constantly increases, which leads to the bogie frame lateral instability and then the frame instability alarm.


2011 ◽  
Vol 338 ◽  
pp. 477-480 ◽  
Author(s):  
Hong Chang Ding ◽  
Lin Jing Xiao

For high-speed permanent magnet (PM) electrical machine, the PM material has very small tensile stress, and it can’t withstand the huge centrifugal force. So, a high-strength sleeve with interference fit is necessary to protect the PM. This paper mainly analyzes the strength of rotor sleeve and PM. It deduces the theoretical calculation method of the strength according to Lame equation, and it also analyzes the stress of sleeve and PM by ANSYS Workbench. The result show that the theoretical calculation value is closely to the ANSYS result, and it can meet the requirements of protecting the permanent magnet in high rotation speed.


2013 ◽  
Vol 712-715 ◽  
pp. 1535-1540
Author(s):  
Li Liu ◽  
Wei Hua Zhang ◽  
Dong Li Song

Axle box spring of railway vehicle is the structure of helical spring in series with rubber pad to reduce working stress of helical spring and absorb high-frequency vibration. Rubber pad model was built. Static and dynamic characteristics were researched in axial and radial directions. The results show that the static stiffness of rubber pad decreases with the increase of radial displacement and increases distinctly with the increase of the amount of compression; The dynamic stiffness of rubber pad increases with the decrease of the excitation force in the case of the same excitation frequency and decreases with the decrease of the frequency in the case of the same excitation displacement. Axle box spring method was established and the amplitude-frequency curve of dynamic stiffness of the spring was presented. The results provide a theoretical basis to research the dynamic performance of railway vehicle.


Robotica ◽  
1992 ◽  
Vol 10 (6) ◽  
pp. 485-495 ◽  
Author(s):  
S.B. Lee ◽  
H.S. Cho

SUMMARYThe mass balancing of robotic manipulators has been shown to have favorable effects on the dynamic characteristics. In actual practice, however, since conventional manipulators have flexibility at their joints, the improved dynamic properties obtainable for rigid manipulators may be influenced by those joint flexibilities. This paper investigates the effects of the joint flexibility on the dynamic properties and the controlled performance of a balanced robotic manipulator. The natural frequency distribution and damping characteristics were investigated through frequency response analyses. To evaluate the dynamic performance a series of simulation studies of the open loop dynamics were made for various trajectories, operating velocities, and joint stiffnesses. These simulations were also carried out for the balanced manipulator with a PD controller built-in inside motor control loop. The results show that, at low speed, the joint flexibility nearly does not influence the performance of the balanced manipulator, but at high speed it tends to render the balanced manipulator susceptible to vibratory motion and yields large joint deformation error.


2011 ◽  
Vol 110-116 ◽  
pp. 186-195 ◽  
Author(s):  
Yung Chang Cheng ◽  
Chern Hwa Chen ◽  
Che Jung Yang

Based on the heuristic nonlinear creep model, the nonlinear coupled differential equations of the motion of a 12 degree-of-freedom (12-DOF) bogie system which takes account of the lateral displacement, vertical displacement, the roll angle and the yaw angle of the each wheelset and the bogie frame, moving on curved tracks are derived. The nonlinear creep forces and moments are constructed via the saturation constant of the nonlinear creep model in completeness. The effect of the suspension parameters of a bogie system on the derailment quotient is investigated. Results obtained in this study show that the derailment quotient of a bogie system increases as the vehicle speed increases. In addition, the derailment quotient of a bogie system is generally decreased with the increasing values of suspension parameters.


2014 ◽  
Vol 638-640 ◽  
pp. 214-218
Author(s):  
Ji Tan Guo ◽  
Yan Wen

The safety of a reinforced concrete frame building with cracks on a large area of its wall was investigated by using numerical analysis and field tests. The cracks were caused by the roof additional equipments. The layout of the roof additional equipments was measured to determine their additional loads. The width and depth of existing cracks was also measured. The static strength analysis based on the finite element technique is used to evaluate the influence of the additional loads on structural strength. The research results show the unreasonable supports of additional loads and the insufficient stiffness of secondary beams are the main reasons for causing cracks on the wall, and a reinforcement and repair thought for the building is proposed.


2011 ◽  
Vol 120 ◽  
pp. 197-202
Author(s):  
Fei Zhang ◽  
Dong Qiang Gao ◽  
Zhi Yun Mao ◽  
Jiang Miao Yi ◽  
Huan Lin

In order to meet high-speed machining center’s overall performance requirements, there are four different worktable structures established in SolidWorks, and they are carried out static analysis in ANSYS Workbench to calculate their static stiffness, so that find out the best structure. In meeting the worktable stiffness, the best structure is optimized in ANSYS Workbench, then the worktable’s quality reduces 8.43% in the original foundation and the cost also decreases, which is a basis for worktable’s dynamic performance analysis.


Author(s):  
Ruixian Xiu ◽  
Maksym Spiryagin ◽  
Qing Wu ◽  
Shuchen Yang ◽  
Yanwen Liu

Current research papers use simulated load spectrums to assess bogie frames’ fatigue life but seldom consider traction and braking loads. Traction and braking loads play important roles in predicting fatigue life in high-speed and heavy haul operational scenarios. Hence, there is a research gap in terms of the consideration of longitudinal load spectrums while assessing bogie frames’ fatigue life. This paper presents research about this topic. A virtual prototype technique available in literature has been extended for this purpose; it uses multibody dynamics and finite element techniques to simulate the behaviour of bogie frames under real operational service loads. As a result, the special simulation methodology has been developed in this work and it includes the unique integration of simulation approaches that includes train dynamics, locomotive dynamics with the consideration of a traction control algorithm and the adopted fatigue life calculation method. This paper gives numerical examples of a rigid-flexible coupled dynamic railway vehicle model subjected to longitudinal forces. Road Environment Percent Occurrence Spectrum (REPOS) load spectrums of the bogie frame were developed from a whole-trip train simulation on a real route. The spectrums are then used to predict locomotive the bogie frame’s fatigue life. The results of the bogie frame fatigue life evaluation performed in this paper show that fatigue lives at the roots of traction rod seats under longitudinal load spectrums are shorter than their fatigue life under vertical load spectrums.


Author(s):  
Chuanyang Wang ◽  
Xu Wang ◽  
Zhibin Yu

The dynamic characteristics of machine tools have significant effects on their processing quality and processing efficiency. Good dynamic performance of machine is the guarantee of machining accuracy. Modal analysis is the foundation of testing the dynamic characteristics of the machine. Model of Column and spindle box of TH6213 boring and milling center machine are established by using the Solid Edge software. Modal analysis for the column and spindle box was done with ANSYS Workbench to get its natural frequency and mode shape. All this provides the theoretical basis for optimizing the structure.


Sign in / Sign up

Export Citation Format

Share Document