Super-Critical Fluid: An overview on Analytical Applications

2021 ◽  
Vol 08 ◽  
Author(s):  
Farhin Kadri ◽  
Gauravi Xavier ◽  
Unnati Patel ◽  
Prajesh Prajapati

Abstract:: Super Critical Fluid is the emerging technique that consists of super solvent, which is considered a boon over many other conventional solvents. The main component utilized in it is Carbon Dioxide [CO2], which possesses dual state properties such as effusion through solid and other dissolving materials like liquid which results in unique applications bidden with no limitations. The varying temperature and pressure are the important parameters optimized and thus enhance its solvent properties. Higher Co-efficient of diffusion, reduction in time, higher compressibility, etc., is some of the major advantages of SCF-CO2 over the conventional solvents. Over and above, it is a green approach and a super solvent. Here we have discussed the multifarious applications of the SCF-CO2 extraction in fields and areas extended, but not limited to, Food, Environmental, Analysis, Metal-Cation Extraction, as well as Extractions, Forensics, Pharmaceuticals, Toxins, and Botanical Samples.

2019 ◽  
Vol 102 (2) ◽  
pp. 662-665 ◽  
Author(s):  
Mamdouh Allawzi ◽  
Hussein Allaboun ◽  
Atheer Almasri

Abstract Background: Experimental investigation of supercritical fluid extraction (SFE) of active ingredients from rosemary herb has been performed. Carbon dioxide (CO2) was used as a solvent with ethanol as a trapping agent. This work showed that the SFE can be an exceptional alternative to the use of chemical solvents. Objective: The effect of temperature and pressure on the extraction process was investigated to increase the yield of the extracted essential components. Methods: The types of extracted compounds from rosemary were specified and analyzed using GC-MS. Results: The results indicated that several essential active ingredient compounds were extracted. Furthermore, the pressure affects the extraction, as the composition ofsome compounds increases with a pressure increase. Conclusions: SFE can be used to extract valuable active ingredients from rosemary. Two process parameters were investigated, namely, pressure and temperature, which indicate that SFE is aselective process for the production of certain constituents. Highlights: Some of themain components of the essential oil of Jordanianrosemary obtained in this study have important applications in pharmaceutical and cosmetic products. Forinstance, α-pinene is one of the main raw compounds used in the perfume industry.


Author(s):  
Paulo Renda Anderson ◽  
Carlos Mergulhão Júnior ◽  
Moacy José Stoffes Junior ◽  
Cléver Reis Stein

This article describes the construction of a complete experimental apparatus to simulate the greenhouse and global warming for educatioal use. These demonstrations are fundamental for people understand the importance of greenhouse effect to keep that life continues on earth and, know about climate change and the causes of global warming. For development of this devise we used an Arduino UNO, temperature and pressure sensors, and low cost products. The experimental results showed that the average atmosphere temperature increases with the increasing concentration of carbon dioxide (CO2). Moreover, this apparatus can be used in classroom to demonstration these important global phenomena.


2018 ◽  
Vol 1 (2) ◽  
pp. 1-8
Author(s):  
Dody Hidayat

Kebakaran dapat terjadi dimana saja salah satunya dapat terjadi di alat transportasi air yakni kapal. Kebakaran selalu menyebabkan hal-hal yang tidak diinginkan baik kerugian material maupun ancaman keselamatan jiwa manusia. Seiring dari kejadian tersebut musibah kecelakaan kapal yang disebabkan oleh bahaya kebakaran sangatlah mungkin terjadi. Salah satu yang dapat mencegah kejadian kebakaran pada kapal haruslah dapat mendeteksi dini kebakaran tersebut. Untuk mendeteksi dini terjadinya kebakaran dikapal maka dirancanglah sebuah alat proteksi kebakaran otomatisberbasis adruino. Dimana Arduino merupakan board yang memiliki sebuah mikrokontroller sebagai  otak kendali sistem. Sistem otomatisasi atau controller tidak akan terlepas dengan apa yang disebut  dengan ‘sensor’. Sensor adalah sebuah alat untuk mendeteksi atau mengukut sesuatu yang digunakan untuk mengubah variasi mekanis, magnetis, panas, sinar dan kimia menjadi tegangan dan arus listrik. sistem yang dirancang ini dilengkapi dengan beberapa sensor diantaranya adalah sensor apiUV-Tron R2868, sensor asap MQ-2 dan kemudian sensor suhuDS18B20. Mikrokontroller sebagai pengendali akan merespon input yang berupa sensor tersebut ketika data yang dibaca oleh sensor mendeteksikebakaran diantaranya mendeteksi adanya asap, kemudian api dan suhu. Sebagai output dari sistem berupa racun api (fire extinguisher)dimana kandungan yang ada pada racun api tersebut berupa Dry Chemical Powder dan Carbon Dioxide (CO2) yang fungsinya digunakan untuk memadamkan api serta dilengkapi buzzer sebagai alarm peringatan jika terjadi kebakaran. 


2012 ◽  
Author(s):  
William R. Howard ◽  
Brian Wong ◽  
Michelle Okolica ◽  
Kimberly S. Bynum ◽  
R. A. James

2020 ◽  
Vol 25 (44) ◽  
pp. 4656-4661 ◽  
Author(s):  
Nikolaos Patelis ◽  
Mikes Doulaptsis ◽  
Stylianos Kykalos ◽  
Eleftherios Spartalis ◽  
Anastasios Maskanakis ◽  
...  

Background: Carbon dioxide (CO2) exists in nature around us. In the middle of the 20th century, the intraluminal injection of CO2 demonstrated similar results to those of Digital Subtraction Angiography (DSA) with an iodinated contrast agent (ICA). Since then, the technology behind CO2 DSA has developed significantly. Objective: The aim of this study is to inform physicians about the unique properties of CO2 and its physiology after intraluminal injection. Methods: An extensive search for English literature on the properties of CO2 and the physiology of intraluminal administration was conducted using Pubmed. Results: There is sufficient literature on the properties of CO2 and the physiology of CO2 DSA. A review of this literature explains what happens to the human organism after the injection of CO2. Conclusions: There is enough evidence that CO2 DSA is both effective, diagnostic and safe, but the properties of CO2 should be taken under consideration as complications occur, although rarely.


Cosmetics ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 56
Author(s):  
Tassahil Messas ◽  
Achraf Messas ◽  
George Kroumpouzos

Genitourinary syndrome of menopause (GSM) causes significant symptomatic aggravation that affects the quality of life (QoL). Vulvovaginal atrophy (VVA), the hallmark of GSM, is managed with topical non-hormonal therapy, including moisturizers and lubricants, and topical estrogen application. Patients not responding/being unsatisfied with previous local estrogen therapies are candidates for a noninvasive modality. Carbon dioxide (CO2) laser therapy, especially the fractionated type (FrCO2), has drawn considerable attention over the past two decades as a non-invasive treatment for GSM. This systematic review describes the accumulated evidence from 40 FrCO2 laser studies (3466 participants) in GSM/VVA. MEDLINE, Scopus and Cochrane databases were searched through April 2021. We analyze the effects of FrCO2 laser therapy on symptoms, sexual function, and QoL of patients with GSM/VVA. As shown in this review, FrCO2 laser therapy for GSM shows good efficacy and safety. This modality has the potential to advance female sexual wellness. Patient satisfaction was high in the studies included in this systematic review. However, there is a lack of level I evidence, and more randomized sham-controlled trials are required. Furthermore, several clinical questions, such as the number of sessions required that determine cost-effectiveness, should be addressed. Also, whether FrCO2 laser therapy may exert a synergistic effect with systemic and/or local hormonal/non-hormonal treatments, energy-based devices, and other modalities to treat GMS requires further investigation. Lastly, studies are required to compare FrCO2 laser therapy with other energy-based devices such as erbium:YAG laser and radiofrequency.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1137
Author(s):  
Katja Bizaj ◽  
Mojca Škerget ◽  
Iztok Jože Košir ◽  
Željko Knez

This work investigates the efficiency of supercritical fluid extraction of hops with a variety of solvents including carbon dioxide (CO2), propane, sulfur hexafluoride (SF6), and dimethyl ether (DME) at various densities (low-density and high-density). Operating parameters were 50 bar, 100 bar and 150 bar and 20 °C, 40 °C, 60 °C and 80 °C for all solvents, respectively. The influence of process parameters on the total yield of extraction and content of bitter acids in the extracts has been investigated. The mathematical model based on Fick’s second law well described the experimental extraction results. Furthermore, HPLC analysis has been used to determine α- and β-acids in extracts. The yield of bitter compounds in hop extracts was largely influenced by the type of solvent, the temperature and pressure applied during extraction. The results show that CO2 and propane were roughly equivalent to DME in solvating power, while SF6 was a poor solvent at the same conditions. The highest yield as well as the highest concentration of bitter acids in extracts were obtained by using DME, where the optimal operating conditions were 40 °C and 100 bar for the extraction of α-acids (max. concentration 9.6%), 60 °C and 50 bar for the extraction of β-acids (4.5%) and 60 °C and 150 bar for the maximum extraction yield (25.6%).


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1711
Author(s):  
Mohamed Ahmed Khaireh ◽  
Marie Angot ◽  
Clara Cilindre ◽  
Gérard Liger-Belair ◽  
David A. Bonhommeau

The diffusion of carbon dioxide (CO2) and ethanol (EtOH) is a fundamental transport process behind the formation and growth of CO2 bubbles in sparkling beverages and the release of organoleptic compounds at the liquid free surface. In the present study, CO2 and EtOH diffusion coefficients are computed from molecular dynamics (MD) simulations and compared with experimental values derived from the Stokes-Einstein (SE) relation on the basis of viscometry experiments and hydrodynamic radii deduced from former nuclear magnetic resonance (NMR) measurements. These diffusion coefficients steadily increase with temperature and decrease as the concentration of ethanol rises. The agreement between theory and experiment is suitable for CO2. Theoretical EtOH diffusion coefficients tend to overestimate slightly experimental values, although the agreement can be improved by changing the hydrodynamic radius used to evaluate experimental diffusion coefficients. This apparent disagreement should not rely on limitations of the MD simulations nor on the approximations made to evaluate theoretical diffusion coefficients. Improvement of the molecular models, as well as additional NMR measurements on sparkling beverages at several temperatures and ethanol concentrations, would help solve this issue.


Sign in / Sign up

Export Citation Format

Share Document