scholarly journals Synergistic Combinations of Antibiotics with Cumin, Oregano and Rosewood Oils as a Strategy to Preserve the Antibiotic Repertoire

2019 ◽  
Vol 5 (4) ◽  
pp. 337-353
Author(s):  
Lucy Owen ◽  
Katie Laird

Background: Formulations employing synergistic combinations of antibiotics with Essential Oils (EOs) could help preserve the antibiotic repertoire by improving their activity against resistant bacteria. Objective: Antimicrobial interactions between double and triple combinations of EOs, EO components and antibiotics were determined using the checkerboard method. The most active triple combinations were then assessed by a time-kill assay. Methods: Two synergistic EO-antibiotic combinations and eight additive EO-antibiotic combinations reduced the antibiotic minimum inhibitory concentration below clinical sensitivity breakpoints according to the checkerboard method. However, all the tested combinations were additive according to the time-kill assay; while the combinations completely killed S. aureus, E. coli and P. aeruginosa cells in 2 h. At least one EO compound from the combination alone completely killed the cells of test species. Results: Two synergistic EO-antibiotic combinations and eight additive EO-antibiotic combinations reduced the antibiotic minimum inhibitory concentration below clinical sensitivity breakpoints according to the checkerboard method. However, all the tested combinations were additive according to the time-kill assay; while the combinations completely killed S. aureus, E. coli and P. aeruginosa cells in 2 h. At least one EO compound from the combination alone completely killed the cells of test species. Conclusion: Positive interactions support the use of EOs or EO components to enhance antibiotic efficacy against antibiotic resistant bacteria. The EO-antibiotic combinations tested by the time kill assay were indifferent; therefore, the observed antimicrobial activity did not arise from synergistic mechanisms as indicated by the checkerboard method. Investigation of other synergistic combinations identified by the checkerboard method could reveal more promising candidates.

Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 639 ◽  
Author(s):  
Wen-Jung Lu ◽  
Hsuan-Ju Lin ◽  
Pang-Hung Hsu ◽  
Hong-Ting Victor Lin

Multidrug efflux pumps play an essential role in antibiotic resistance. The conventional methods, including minimum inhibitory concentration and fluorescent assays, to monitor transporter efflux activity might have some drawbacks, such as indirect evidence or interference from color molecules. In this study, MALDI-TOF MS use was explored for monitoring drug efflux by a multidrug transporter, and the results were compared for validation with the data from conventional methods. Minimum inhibitory concentration was used first to evaluate the activity of Escherichia coli drug transporter AcrB, and this analysis showed that the E. coli overexpressing AcrB exhibited elevated resistance to various antibiotics and dyes. Fluorescence-based studies indicated that AcrB in E. coli could decrease the accumulation of intracellular dyes and display various efflux rate constants for different dyes, suggesting AcrB’s efflux activity. The MALDI-TOF MS analysis parameters were optimized to maintain a detection accuracy for AcrB’s substrates; furthermore, the MS data showed that E. coli overexpressing AcrB led to increased ions abundancy of various dyes and drugs in the extracellular space at different rates over time, illustrating continuous substrate efflux by AcrB. This study concluded that MALDI-TOF MS is a reliable method that can rapidly determine the drug pump efflux activity for various substrates.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257431
Author(s):  
Sirirak Arthithanyaroj ◽  
Surang Chankhamhaengdecha ◽  
Urai Chaisri ◽  
Ratchaneewan Aunpad ◽  
Amornrat Aroonnual

Clostridioides difficile infection is the most common cause of nosocomial and antibiotic-associated diarrhea. C. difficile treatment is increasingly likely to fail, and the recurrence rate is high. Antimicrobial peptides are considered an alternative treatment for many infectious diseases, including those caused by antibiotic resistant bacteria. In the present study, we identified a CM peptide, a hybrid of cecropin A and melittin, and its derivative which possesses potent antimicrobial activity against C. difficile strain 630. CM peptide exhibited antibacterial activity with minimum inhibitory concentration of 3.906 μg/ml (2.21 μM). A modified derivative of CM, CM-A, exhibited even greater activity with a minimum inhibitory concentration of 1.953 μg/ml (1.06 μM) and a minimum bactericidal concentration of 7.8125 μg/ml (4.24 μM), which indicates that CM-A peptide is more efficient than its parent peptide. A fluorescence-activated cell sorter analysis revealed that the membrane of C. difficile 630 could be an important target for CM-A. This peptide induced high levels of cell depolarization and cell permeability on C. difficile cell membrane. Moreover, electron microscopy imaging showed that CM-A interferes with the C. difficile cell membrane. Hence, the antimicrobial peptide CM-A may represent a promising novel approach for the treatment of C. difficile infections.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3055 ◽  
Author(s):  
Ruby Celsia Arul Selvaraj ◽  
Mala Rajendran ◽  
Hari Prasath Nagaiah

Biofilm-associated tissue and device infection is a major threat to therapy. The present work aims to potentiate β-lactam antibiotics with biologically synthesized copper oxide nanoparticles. The synergistic combination of amoxyclav with copper oxide nanoparticles was investigated by checkerboard assay and time-kill assay against bacteria isolated from a burn wound and a urinary catheter. The control of biofilm formation and extracellular polymeric substance production by the synergistic combination was quantified in well plate assay. The effect of copper oxide nanoparticles on the viability of human dermal fibroblasts was evaluated. The minimum inhibitory concentration and minimum bactericidal concentration of amoxyclav were 70 μg/mL and 140 μg/mL, respectively, against Proteus mirabilis and 50 μg/mL and 100 μg/mL, respectively, against Staphylococcus aureus. The synergistic combination of amoxyclav with copper oxide nanoparticles reduced the minimum inhibitory concentration of amoxyclav by 16-fold against P. mirabilis and 32-fold against S. aureus. Above 17.5 μg/mL, amoxyclav exhibited additive activity with copper oxide nanoparticles against P. mirabilis. The time-kill assay showed the efficacy of the synergistic combination on the complete inhibition of P. mirabilis and S. aureus within 20 h and 24 h, respectively, whereas amoxyclav and copper oxide nanoparticles did not inhibit P. mirabilis and S. aureus until 48 h. The synergistic combination of amoxyclav with copper oxide nanoparticles significantly reduced the biofilm formed by P. mirabilis and S. aureus by 85% and 93%, respectively. The concentration of proteins, carbohydrates, and DNA in extracellular polymeric substances of the biofilm was significantly reduced by the synergistic combination of amoxyclav and copper oxide nanoparticles. The fibroblast cells cultured in the presence of copper oxide nanoparticles showed normal morphology with 99.47% viability. No cytopathic effect was observed. Thus, the study demonstrated the re-potentiation of amoxyclav by copper oxide nanoparticles.


Bioimpacts ◽  
2018 ◽  
Vol 8 (4) ◽  
pp. 253-261 ◽  
Author(s):  
Ravi Ranjan Kumar ◽  
Vasantba J Jadeja

Introduction: The inevitable rise of antibiotic-resistant bacteria is a global health problem. These pathogens erode the utility of available antibiotics. Staphylococcus aureus is one of the major causes of community-acquired infections. The aim of work was to evaluate the marine actinomycetes for production of the antibacterial agent against pathogens. Methods: Halophilic actinomycetes were isolated, characterized and screened for production of antibacterial agent against pathogenic bacteria. The antibacterial compounds were extracted by solvent extraction and separated by TLC based bioautography. Antibacterial compound was further purified by flash chromatography followed by high-performance liquid chromatography (HPLC) techniques. The active fraction was characterized by spectroscopy techniques. The minimum inhibitory concentration of antibiotic was determined against pathogens. Results: A new halophilic actinomycetes strain rsk4 was isolated from marine water. It was designated as Kocuria sp. based on the physiological, biochemical and 16S rDNA sequence-based characters. It was able to produce broad-spectrum antibacterial compound and exhibited significant inhibitory activities against antibiotic-resistant S. aureus. The antibacterial compound was secreted optimally at 5% NaCl and neutral pH in the starch casein medium during stationary phase. The crude ethyl acetate extract was separated by chloroform-methanol, 24:1, v/v having Rf value 0.45. Bioassay of HPLC fractions confirms the presence of antibiotics picks at retention time: 3.24 minutes. The UV-Visible and mass spectra of the compound revealed that the active compound was different from other known antibiotics. The lowest minimum inhibitory concentration was recorded against S. aureus (30 µg/mL). Conclusion: The result suggests that a broad-spectrum antibacterial compound obtained from halophilic actinomycetes is effective against pathogenic bacteria. This compound may be a good alternative treatment against antibiotic-resistant pathogen S. aureus.


2019 ◽  
pp. 48-54
Author(s):  
Duy Binh Nguyen ◽  
Trung Tien Phan ◽  
Trong Hanh Hoang ◽  
Van Tuan Mai ◽  
Xuan Chuong Tran

Sepsis is a serious bacterial infection. The main treatment is using antibiotics. However, the rate of antibiotic resistance is very high and this resistance is related to the outcome of treatment. Objectives: To evaluate the situation of antibiotic resistance of some isolated bacteria in sepsis patients treated at Hue Central Hospital; to evaluate the relationship of antibiotic resistance to the treatment results in patients with sepsis. Subjects and methods: prospective study of 60 sepsis patients diagnosed according to the criteria of the 3rd International Consensus-Sepsis 3 and its susceptibility patterns from April 2017 to August 2018. Results and Conclusions: The current agents of sepsis are mainly S. suis, Burkhoderiae spp. and E. coli. E. coli is resistant to cephalosporins 3rd, 4th generation and quinolone group is over 75%; resistance to imipenem 11.1%; the ESBL rate is 60%. S. suis resistant to ampicilline 11.1%; no resistance has been recorded to ceftriaxone and vancomycine. Resistance of Burkholderiae spp. to cefepime and amoxicillin/clavulanic acid was 42.9% and 55.6%, resistant to imipenem and meropenem is 20%, resistance to ceftazidime was not recorded. The deaths were mostly dued to E. coli and K. pneumoniae. The mortality for patients infected with antibiotic-resistant bacteria are higher than for sensitive groups. Key words: Sepsis, bacterial infection, antibiotics


2016 ◽  
Vol 5 (04) ◽  
pp. 4512
Author(s):  
Jackie K. Obey ◽  
Anthoney Swamy T* ◽  
Lasiti Timothy ◽  
Makani Rachel

The determination of the antibacterial activity (zone of inhibition) and minimum inhibitory concentration of medicinal plants a crucial step in drug development. In this study, the antibacterial activity and minimum inhibitory concentration of the ethanol extract of Myrsine africana were determined for Escherichia coli, Bacillus cereus, Staphylococcus epidermidis and Streptococcus pneumoniae. The zones of inhibition (mm±S.E) of 500mg/ml of M. africana ethanol extract were 22.00± 0.00 for E. coli,20.33 ±0.33 for B. cereus,25.00± 0.00 for S. epidermidis and 18. 17±0.17 for S. pneumoniae. The minimum inhibitory concentration(MIC) is the minimum dose required to inhibit growth a microorganism. Upon further double dilution of the 500mg/ml of M. africana extract, MIC was obtained for each organism. The MIC for E. coli, B. cereus, S. epidermidis and S. pneumoniae were 7.81mg/ml, 7.81mg/ml, 15.63mg/ml and 15.63mg/ml respectively. Crude extracts are considered active when they inhibit microorganisms with zones of inhibition of 8mm and above. Therefore, this study has shown that the ethanol extract of M. africana can control the growth of the four organisms tested.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 466
Author(s):  
Herbert Galler ◽  
Josefa Luxner ◽  
Christian Petternel ◽  
Franz F. Reinthaler ◽  
Juliana Habib ◽  
...  

In recent years, antibiotic-resistant bacteria with an impact on human health, such as extended spectrum β-lactamase (ESBL)-containing Enterobacteriaceae, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE), have become more common in food. This is due to the use of antibiotics in animal husbandry, which leads to the promotion of antibiotic resistance and thus also makes food a source of such resistant bacteria. Most studies dealing with this issue usually focus on the animals or processed food products to examine the antibiotic resistant bacteria. This study investigated the intestine as another main habitat besides the skin for multiresistant bacteria. For this purpose, faeces samples were taken directly from the intestines of swine (n = 71) and broiler (n = 100) during the slaughter process and analysed. All samples were from animals fed in Austria and slaughtered in Austrian slaughterhouses for food production. The samples were examined for the presence of ESBL-producing Enterobacteriaceae, MRSA, MRCoNS and VRE. The resistance genes of the isolated bacteria were detected and sequenced by PCR. Phenotypic ESBL-producing Escherichia coli could be isolated in 10% of broiler casings (10 out of 100) and 43.6% of swine casings (31 out of 71). In line with previous studies, the results of this study showed that CTX-M-1 was the dominant ESBL produced by E. coli from swine (n = 25, 83.3%) and SHV-12 from broilers (n = 13, 81.3%). Overall, the frequency of positive samples with multidrug-resistant bacteria was lower than in most comparable studies focusing on meat products.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 850
Author(s):  
Shobha Giri ◽  
Vaishnavi Kudva ◽  
Kalidas Shetty ◽  
Veena Shetty

As the global urban populations increase with rapid migration from rural areas, ready-to-eat (RTE) street foods are posing food safety challenges where street foods are prepared with less structured food safety guidelines in small and roadside outlets. The increased presence of extended-spectrum-β-lactamase (ESBL) producing bacteria in street foods is a significant risk for human health because of its epidemiological significance. Escherichia coli and Klebsiella pneumoniae have become important and dangerous foodborne pathogens globally for their relevance to antibiotic resistance. The present study was undertaken to evaluate the potential burden of antibiotic-resistant E. coli and K. pneumoniae contaminating RTE street foods and to assess the microbiological quality of foods in a typical emerging and growing urban suburb of India where RTE street foods are rapidly establishing with public health implications. A total of 100 RTE food samples were collected of which, 22.88% were E. coli and 27.12% K. pneumoniae. The prevalence of ESBL-producing E. coli and K. pneumoniae was 25.42%, isolated mostly from chutneys, salads, paani puri, and chicken. Antimicrobial resistance was observed towards cefepime (72.9%), imipenem (55.9%), cefotaxime (52.5%), and meropenem (16.9%) with 86.44% of the isolates with MAR index above 0.22. Among β-lactamase encoding genes, blaTEM (40.68%) was the most prevalent followed by blaCTX (32.20%) and blaSHV (10.17%). blaNDM gene was detected in 20.34% of the isolates. This study indicated that contaminated RTE street foods present health risks to consumers and there is a high potential of transferring multi-drug-resistant bacteria from foods to humans and from person to person as pathogens or as commensal residents of the human gut leading to challenges for subsequent therapeutic treatments.


Author(s):  
Maria Clara V. M. Starling ◽  
Elizângela P. Costa ◽  
Felipe A. Souza ◽  
Elayne C. Machado ◽  
Juliana Calábria de Araujo ◽  
...  

AbstractThis work investigated an innovative alternative to improve municipal wastewater treatment plant effluent (MWWTP effluent) quality aiming at the removal of contaminants of emerging concern (caffeine, carbendazim, and losartan potassium), and antibiotic-resistant bacteria (ARB), as well as disinfection (E. coli). Persulfate was used as an alternative oxidant in the solar photo-Fenton process (solar/Fe/S2O82−) due to its greater stability in the presence of matrix components. The efficiency of solar/Fe/S2O82− at neutral pH using intermittent iron additions is unprecedented in the literature. At first, solar/Fe/S2O82− was performed in a solar simulator (30 W m−2) leading to more than 60% removal of CECs, and the intermittent iron addition strategy was proved effective. Then, solar/Fe/S2O82− and solar/Fe/H2O2 were compared in semi-pilot scale in a raceway pond reactor (RPR) and a cost analysis was performed. Solar/Fe/S2O82− showed higher efficiencies of removal of target CECs (55%), E. coli (3 log units), and ARB (3 to 4 log units) within 1.9 kJ L−1 of accumulated irradiation compared to solar/Fe/H2O2 (CECs, 49%; E. coli, 2 log units; ARB, 1 to 3 log units in 2.5 kJ L−1). None of the treatments generated acute toxicity upon Allivibrio fischeri. Lower total cost was obtained using S2O82− (0.6 € m−3) compared to H2O2 (1.2 € m−3). Therefore, the iron intermittent addition aligned to the use of persulfate is suitable for MWWTP effluent quality improvement at neutral pH.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Abdulkader Masri ◽  
Naveed Ahmed Khan ◽  
Muhammad Zarul Hanifah Md Zoqratt ◽  
Qasim Ayub ◽  
Ayaz Anwar ◽  
...  

Abstract Backgrounds Escherichia coli K1 causes neonatal meningitis. Transcriptome studies are indispensable to comprehend the pathology and biology of these bacteria. Recently, we showed that nanoparticles loaded with Hesperidin are potential novel antibacterial agents against E. coli K1. Here, bacteria were treated with and without Hesperidin conjugated with silver nanoparticles, and silver alone, and 50% minimum inhibitory concentration was determined. Differential gene expression analysis using RNA-seq, was performed using Degust software and a set of genes involved in cell stress response and metabolism were selected for the study. Results 50% minimum inhibitory concentration with silver-conjugated Hesperidin was achieved with 0.5 μg/ml of Hesperidin conjugated with silver nanoparticles at 1 h. Differential genetic analysis revealed the expression of 122 genes (≥ 2-log FC, P< 0.01) in both E. coli K1 treated with Hesperidin conjugated silver nanoparticles and E. coli K1 treated with silver alone, compared to untreated E. coli K1. Of note, the expression levels of cation efflux genes (cusA and copA) and translocation of ions, across the membrane genes (rsxB) were found to increase 2.6, 3.1, and 3.3- log FC, respectively. Significant regulation was observed for metabolic genes and several genes involved in the coordination of flagella. Conclusions The antibacterial mechanism of nanoparticles maybe due to disruption of the cell membrane, oxidative stress, and metabolism in E. coli K1. Further studies will lead to a better understanding of the genetic mechanisms underlying treatment with nanoparticles and identification of much needed novel antimicrobial drug candidates.


Sign in / Sign up

Export Citation Format

Share Document