Covid-19: An Insight over the Third Respiratory Global Emergency of the Century

Coronaviruses ◽  
2020 ◽  
Vol 01 ◽  
Author(s):  
Sonali Batra ◽  
Sumit Sharma ◽  
Payal Verma ◽  
Nikhil Arora

Introduction: COVID-19 presents the global emergency in recent days and as a consequence the whole world is in a state of war. Continuous efforts by researchers are in process to establish sound scientific understanding regarding viral behavior and pathogenesis. Background: In recent days a lot of scientific data is published describing viral transfusion into host cells, comparing with SARS-CoV-1, viability of SARS-CoV-2, fatality and diagnosis of infection among infected patients. Thereby, motivating to take right decisions in order to treat and mitigate the COVID-19. Review results: Coronaviruses usually affect the respiratory tract and produce symptoms similar to pneumonia with varied complications. The spike protein on the surface of virus makes the SARS-CoV-2 phylogenetically different from other viruses of corona family. SARS-CoV-2 has an affinity for angiotensin converting enzyme-2 receptors present on human cells. The fatality of the disease is found to be low but the severity of the disease might vary from person to person. The incubation period is 14 days but the symptoms like dry cough and high fever are evident around 3-7 days. Already known anti inflammatory, immunomodulators and antiviral drugs are being tested and still under clinical trials. Conclusion: In this review, we are providing an insight over emergence, correlation with SARS-CoV-1 and interpretation of global data representing the severity of unexpected danger on humanity. Certain structural aspects and studies determining the viability of novel coronavirus have also been described. Moreover, case studies of recovered infected patients from COVID-19 explain the progression and patients pathophysiological conditions while suffering from infection. Clinical significance: There are many current strategies which are being tried and practiced to overcome this pandemic disease apart from precautionary measures. Although now, some decline has been seen, but the question still remain same standstill of whether the scientists are approaching towards the clinical solution, or still in midstream. This requires more study and intensive research to finally come to a concrete conclusion.

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jinsung Yang ◽  
Simon J. L. Petitjean ◽  
Melanie Koehler ◽  
Qingrong Zhang ◽  
Andra C. Dumitru ◽  
...  

Abstract Study of the interactions established between the viral glycoproteins and their host receptors is of critical importance for a better understanding of virus entry into cells. The novel coronavirus SARS-CoV-2 entry into host cells is mediated by its spike glycoprotein (S-glycoprotein), and the angiotensin-converting enzyme 2 (ACE2) has been identified as a cellular receptor. Here, we use atomic force microscopy to investigate the mechanisms by which the S-glycoprotein binds to the ACE2 receptor. We demonstrate, both on model surfaces and on living cells, that the receptor binding domain (RBD) serves as the binding interface within the S-glycoprotein with the ACE2 receptor and extract the kinetic and thermodynamic properties of this binding pocket. Altogether, these results provide a picture of the established interaction on living cells. Finally, we test several binding inhibitor peptides targeting the virus early attachment stages, offering new perspectives in the treatment of the SARS-CoV-2 infection.


2020 ◽  
Author(s):  
Saroj Kumar Panda ◽  
Parth Sarthi Sen Gupta ◽  
Satyaranjan Biswal ◽  
Abhik Kumar Ray ◽  
Malay Kumar Rana

<p>SARS-CoV-2, a novel coronavirus causing overwhelming death and infection worldwide, has emerged as a pandemic. Compared to its predecessor SARS-CoV, SARS-CoV-2 is more infective for being highly contagious and exhibiting tighter binding with host angiotensin-converting enzyme 2 (hACE-2). The entry of the virus into host cells is mediated by the interaction of its spike protein with hACE-2. Thus, a peptide that has a resemblance to hACE-2 but can overpower the spike protein-hACE-2 interaction will be a potential therapeutic to contain this virus. The non-interacting residues in the receptor-binding domain of hACE-2 have been mutated to generate a library of 136 new peptides. Out of this library, docking and virtual screening discover seven peptides that can exert a stronger interaction with the spike protein than hACE-2. A peptide derived from simultaneous mutation of all the non-interacting residues of hACE-2 yields two-fold stronger interaction than hACE-2 and thus turns out here to be the best peptide-inhibitor of the novel coronavirus. The binding of the spike protein and the best peptide-inhibitor with hACE-2 is explored further by molecular dynamics, free energy, and principal component analysis to demonstrate its efficacy. Further, the inhibition assay study with the best peptide inhibitor is in progress. </p>


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3980 ◽  
Author(s):  
Muchtaridi Muchtaridi ◽  
M. Fauzi ◽  
Nur Kusaira Khairul Ikram ◽  
Amirah Mohd Gazzali ◽  
Habibah A. Wahab

Over the years, coronaviruses (CoV) have posed a severe public health threat, causing an increase in mortality and morbidity rates throughout the world. The recent outbreak of a novel coronavirus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the current Coronavirus Disease 2019 (COVID-19) pandemic that affected more than 215 countries with over 23 million cases and 800,000 deaths as of today. The situation is critical, especially with the absence of specific medicines or vaccines; hence, efforts toward the development of anti-COVID-19 medicines are being intensively undertaken. One of the potential therapeutic targets of anti-COVID-19 drugs is the angiotensin-converting enzyme 2 (ACE2). ACE2 was identified as a key functional receptor for CoV associated with COVID-19. ACE2, which is located on the surface of the host cells, binds effectively to the spike protein of CoV, thus enabling the virus to infect the epithelial cells of the host. Previous studies showed that certain flavonoids exhibit angiotensin-converting enzyme inhibition activity, which plays a crucial role in the regulation of arterial blood pressure. Thus, it is being postulated that these flavonoids might also interact with ACE2. This postulation might be of interest because these compounds also show antiviral activity in vitro. This article summarizes the natural flavonoids with potential efficacy against COVID-19 through ACE2 receptor inhibition.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Alireza Mansouri ◽  
Rasoul Kowsar ◽  
Mostafa Zakariazadeh ◽  
Hassan Hakimi ◽  
Akio Miyamoto

AbstractThe novel coronavirus disease (COVID-19) is currently a big concern around the world. Recent reports show that the disease severity and mortality of COVID-19 infected patients may vary from gender to gender with a very high risk of death for seniors. In addition, some steroid structures have been reported to affect coronavirus, SARS-CoV-2, function and activity. The entry of SARS-CoV-2 into host cells depends on the binding of coronavirus spike protein to angiotensin converting enzyme-2 (ACE2). Viral main protease is essential for the replication of SARS-CoV-2. It was hypothesized that steroid molecules (e.g., estradiol, progesterone, testosterone, dexamethasone, hydrocortisone, prednisone and calcitriol) could occupy the active site of the protease and could alter the interaction of spike protein with ACE2. Computational data showed that estradiol interacted more strongly with the main protease active site. In the presence of calcitriol, the binding energy of the spike protein to ACE2 was increased, and transferring Apo to Locked S conformer of spike trimer was facilitated. Together, the interaction between spike protein and ACE2 can be disrupted by calcitriol. Potential use of estradiol and calcitriol to reduce virus invasion and replication needs clinical investigation.


Author(s):  
Sanchita Hati ◽  
Sudeep Bhattacharyya

AbstractThe novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to an ongoing pandemic of coronavirus disease (COVID-19), which started in 2019. This is a member of Coronaviridae family in the genus Betacoronavirus, which also includes SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV). The angiotensin-converting enzyme 2 (ACE2) is the functional receptor for SARS-CoV and SARS-CoV-2 to enter the host cells. In particular, the interaction of viral spike proteins with ACE2 is a critical step in the viral replication cycle. The receptor binding domain of the viral spike proteins and ACE2 have several cysteine residues. In this study, the role of thiol-disulfide balance on the interactions between SARS-CoV/CoV-2 spike proteins and ACE2 was investigated using molecular dynamic simulations. The study revealed that the binding affinity was significantly impaired when all the disulfide bonds of both ACE2 and SARS-CoV/CoV-2 spike proteins were reduced to thiol groups. The impact on the binding affinity was less severe when the disulfide bridges of only one of the binding partners were reduced to thiols. This computational finding provides a molecular basis for the severity of COVID-19 infection due to the oxidative stress.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Selcan Sinaci ◽  
Doga Fatma Ocal ◽  
Eda Ozden Tokalioglu ◽  
Filiz Halici Ozturk ◽  
Selvi Aydin Senel ◽  
...  

Abstract Objectives We aimed to evaluate the cardiotocograph (CTG) traces of 224 women infected with novel coronavirus 2019 (COVID-19) and analyze whether changes in the CTG traces are related to the severity of COVID-19. Methods We designed a prospective cohort study. Two-hundred and twenty-four women who had a single pregnancy of 32 weeks or more, and tested positive for SARS-CoV-2 were included. Clinical diagnosis and classifications were made according to the Chinese management guideline for COVID-19 (version 6.0). Patients were classified into categories as mild, moderate, severe and the CTG traces were observed comparing the hospital admission with the third day of positivity. Results There was no statistically significant relationship between COVID-19 severity and CTG category, variability, tachycardia, bradycardia, acceleration, deceleration, and uterine contractility, Apgar 1st and 5th min. Conclusions Maternal COVID-19 infection can cause changes that can be observed in CTG. Regardless of the severity of the disease, COVID-19 infection is associated with changes in CTG. The increase in the baseline is the most obvious change.


Author(s):  
Stefan Bittmann

According to the latest research, the novel coronavirus uses the protein angiotensin-converting enzyme 2 (ACE-2) as a receptor for docking to the host cell. Essential for entry is the priming of the spike (S) protein of the virus by host cell proteases. A broadly based team led by infection biologists from the German Primate Centre and with the participation of the Charité Hospital in Berlin, the Hanover Veterinary University Foundation, the BG-UnfallklinikMurnau, the LMU Munich, the Robert Koch Institute and the German Centre for Infection Research wanted to find out how SARS-CoV-2 enters host cells and how this process can be blocked [1]. They have published their findings in the journal "Cell" [1]. The team of scientists was initially able to confirm that SARS-CoV-2 docks to the host cell via the ACE-2 receptor. They also identified Transmembrane serine protease 2 (TMPRSS2) as the cellular protein responsible for entry into the cell [1-3].


Author(s):  
Jinsung Yang ◽  
Simon Petitjean ◽  
Sylvie Derclaye ◽  
Melanie Koehler ◽  
Qingrong Zhang ◽  
...  

Abstract Study of virus entry into cells is of critical importance for a better understanding of the interactions established between the viral glycoproteins and their receptors at the cell surface and could help to develop novel antiviral strategies. The novel coronavirus (SARS-CoV-2) entry into host cells is mediated by the transmembrane spike glycoprotein (S-glycoprotein) and the angiotensin-converting enzyme 2 (ACE2) has been identified as a cellular receptor. Here, we used atomic force microscopy to investigate the molecular mechanisms by which the S- glycoprotein binds to the ACE2 receptor. We demonstrated, both on model surfaces and on living cells, that the receptor binding domain (RBD) serves as a binding interface within the S- glycoprotein with the ACE2 receptor and we extracted the kinetic and thermodynamic properties of this binding pocket. Altogether, these results give a dynamic picture of the established interaction in physiologically relevant conditions. Finally, we identified and tested several binding inhibitor peptides targeting the virus early attachment stages, offering new perspectives in the treatment of the SARS-CoV-2 infection.


2021 ◽  
Vol 5 (01) ◽  
pp. 1-4
Author(s):  
Hayder M. Al-Kuraishy ◽  
Marwa S. Al-Niemi ◽  
Nawar R. Hussain ◽  
Ali I. Al-Gareeb ◽  
Claire Lugnier

Primary infection of SARS-CoV-2 (novel coronavirus or 2019-nCoV), which leads to Covid-19, targets specific cells, such as nasal, bronchial epithelial and pneumocytes, through the viral structural spike (S) protein that binds to the angiotensin-converting enzyme 2 (ACE2) receptor. Also, type 2 transmembrane serine protease (TMPRSS2) present in the host cell promotes viral uptake by cleaving ACE2 and triggering the SARS-CoV-2 S protein, which facilitates SARS-CoV-2 entry into host cells. One of the TMPRSS2 inhibitors with a greater distribution capacity into the lung tissue is bromhexine hydrochloride which attenuates the entry and proliferation of SARS-CoV-2. Bromhexine is an effective drug in the management and treatment of Covid-19 pneumonia via targeting ACE2/ TMPRSS2 pathway. However, prospective and controlled clinical trials are recommended to confirm this observation.


2020 ◽  
Vol 8 (Spl-1-SARS-CoV-2) ◽  
pp. S190-S201
Author(s):  
Muhammad Bilal ◽  
◽  
Muhammad Iqbal Sarfaraz ◽  
Muhammad Iqbal Husnain ◽  
Nimra Sardar ◽  
...  

Novel coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has rapidly spread across the world. SARS-CoV-2 is viewed as a continuous global health threat resulting in an alarming number of fatalities worldwide. Angiotensin-converting enzyme-2 (ACE2) has been recognized as one of the vital receptors for the SARS-CoV-2, leading to viral entry into the host cells. It also helps many other receptors, which initiate the entry of SARS-CoV-2 in the host body. A variety of proteins and enzymes are involved in triggering the transport mechanism. The route of viral infection depends on the distribution and expression of receptors, as the virus reaches the cell by binding to cell receptors to complete intracellular replication, virus release, and cause cytotoxicity. In addition to alveolar lung tissues, ACE2 also plays a pivotal role in other organs. Due to the abundant presence in lung cells, SARS-CoV-2 mostly affects the lungs and causes their destruction. The spike protein utilizes the digestion of ACE2, which strongly contributes to the pathogenesis of severe lung failure. Different experiments show that ACE2 not only helps the virus to migrate in the host cell but also allow us to fight against this pandemic disease. This review article summarizes the current progress that highlights the critical biological functionalities and mechanisms of ACE2 as the novel receptor to transport SARS-CoV-2 into host cells matrix.


Sign in / Sign up

Export Citation Format

Share Document