Multipotentiality of Luliconazole against Various Fungal Strains: Novel Topical Formulations and Patent Review

Author(s):  
Ayushi Mahajan ◽  
Lakhvir Kaur ◽  
Gurjeet Singh ◽  
RK Dhawan ◽  
Lovepreet Singh

Background: Luliconazole is a broad-spectrum antifungal agent with impactful fungicidal and fungistatic activity. It has shown exceptional potency against miscellaneous fungal strains like Candida, Aspergillus, Malassezia, Fusarium species and various dermatophytes. Objective: Luliconazole belongs to class Ⅱ of the Biopharmaceutical Classification System with low aqueous solubility. Although it is available conventionally as 1% w/v topical cream, it has limitations of lower skin permeation and shorter skin retention. Therefore, nanoformulations based on various polymers and nanostructure carriers can be employed to overcome the impediments regarding topical delivery and efficacy of luliconazole. Methods: In this review, we have tried to provide insight into the literature gathered from authentic web resources and research articles regarding recent research conducted on the subject of formulation development, patents, and future research requisites of luliconazole. Results: Nanoformulations can play a fundamental role in improving topical delivery by escalating dermal localization and skin penetration. Fabricating luliconazole into nanoformulations can overcome the drawbacks and can efficiently enhance its antimycotic activity. Conclusion: It has been concluded that luliconazole has exceptional potential in the treatment of various fungal infections, and therefore, it should be exploited to its maximum for its innovative application in the field of mycology.

2020 ◽  
Vol 17 (4) ◽  
pp. 270-278
Author(s):  
Maha Nasr ◽  
Rawan Al-Karaki

Nanotechnology is currently a hot topic in dermatology and nutraceutical/cosmeceutical delivery, owing to the advantages it provides in terms of enhancing the skin permeation of drugs, as well as increasing their therapeutic efficacy in the treatment of different dermatological diseases. There is also a great interest in the topical delivery of nutraceuticals; which are natural compounds with both therapeutic and cosmetic benefits, in order to overcome the side effects of topically applied chemical drugs. Quercetin is a key nutraceutical with topical antioxidant and anti-inflammatory properties which was reported to be effective in the treatment of different dermatological diseases, however, its topical therapeutic activity is hindered by its poor skin penetration. This review highlights the topical applications of quercetin, and summarizes the nanocarrier-based solutions to its percutaneous delivery challenges.


2019 ◽  
Vol 24 (43) ◽  
pp. 5108-5128 ◽  
Author(s):  
Kanika Thakur ◽  
Gajanand Sharma ◽  
Bhupindar Singh ◽  
Om Prakash Katare

Background:The therapeutic approaches for the management of topical infections have always been a difficult approach due to lack of efficacy of conventional topical formulations, high frequency of topical applications and non-patient compliance. The major challenge in the management of topical infections lies in antibiotic resistance which leads to severe complications and hospitalizations resulting in economic burden and high mortality rates.Methods:Topical delivery employing lipid-based carriers has been a promising strategy to overcome the challenges of poor skin permeation and retention along with large doses which need to be administered systemically. The use of lipid-based delivery systems is a promising strategy for the effective topical delivery of antibiotics and overcoming drug-resistant strains in the skin. The major systems include transfersomes, niosomes, ethosomes, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion and nanoemulsion as the most promising drug delivery approaches to treat infectious disorders. The main advantages of these systems include lipid bilayer structure which mimics the cell membrane and can fuse with infectious microbes. The numerous advantages associated with nanocarriers like enhanced efficacy, improvement in bioavailability, controlled drug release and ability to target the desired infectious pathogen have made these carriers successful.Conclusion:Despite the number of strides taken in the field of topical drug delivery in infectious diseases, it still requires extensive research efforts to have a better perspective of the factors that influence drug permeation along with the mechanism of action with regard to skin penetration and deposition. The final objective of the therapy is to provide a safe and effective therapeutic approach for the management of infectious diseases affecting topical sites leading to enhanced therapeutic efficacy and patient-compliance.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 138 ◽  
Author(s):  
Monica Argenziano ◽  
Adam Haimhoffer ◽  
Chiara Bastiancich ◽  
László Jicsinszky ◽  
Fabrizio Caldera ◽  
...  

Imiquimod (IMQ) is an immune response modifier clinically used for the treatment of various topical diseases. However, its poor aqueous solubility and skin penetration capability make the topical delivery of IMQ a challenging task. This work aims at developing a nanomedicine-based topical formulation, carrying IMQ to control the scarring process for the treatment of aberrant wounds. For this purpose, IMQ was loaded in β-cyclodextrin-based nanosponges and dispersed in a hydrogel suitable for dermal application. The formulation was characterized in vitro and compared with IMQ inclusion complexes, with (2-hydroxy)propyl β-cyclodextrin(HPβCD) and carboxymethyl β-cyclodextrin (CMβCD) showing enhanced penetration properties. The hydrogel containing IMQ-loaded nanosponges could act as a drug reservoir and guarantee the sustained release of IMQ through the skin. A greater inhibitory effect on fibroblast proliferation was observed for IMQ loaded in nanosponges compared to the other formulations.


2018 ◽  
Vol 25 (5) ◽  
pp. 606-635 ◽  
Author(s):  
Amanda C. Carita ◽  
Josimar O. Eloy ◽  
Marlus Chorilli ◽  
Robert J. Lee ◽  
Gislaine Ricci Leonardi

The cutaneous route is attractive for the delivery of drugs in the treatment of a wide variety of diseases. However the stratum corneum (SC) is an effective barrier that hampers skin penetration. Within this context, liposomes emerge as a potential carrier for improving topical delivery of therapeutic agents. In this review, we aimed to discuss key aspects for the topical delivery by drug-loaded liposomes. Phospholipid type and phase transition temperature have been shown to affect liposomal topical delivery. The effect of surface charge is subject to considerable variation depending on drug and composition. In addition, modified vesicles with the presence of components for permeation enhancement, such as surfactants and solvents, have been shown to have a considerable effect. These liposomes include: Transfersomes, Niosomes, Ethosomes, Transethosomes, Invasomes, coated liposomes, penetration enhancer containing vesicles (PEVs), fatty acids vesicles, Archaeosomes and Marinosomes. Furthermore, adding polymeric coating onto liposome surface could influence cutaneous delivery. Mechanisms of delivery include intact vesicular skin penetration, free drug diffusion, permeation enhancement, vesicle adsorption to and/or fusion with the SC, trans-appendageal penetration, among others. Finally, several skin conditions, including acne, melasma, skin aging, fungal infections and skin cancer, have benefited from liposomal topical delivery of drugs, with promising in vitro and in vivo results. However, despite the existence of some clinical trials, more studies are needed to be conducted in order to explore the potential of liposomes in the dermatological field.


2020 ◽  
Vol 12 ◽  
Author(s):  
Shivani Verma ◽  
Sukhjinder Kaur ◽  
Lalit Kumar

Background: HQ is used for hyper-pigmentation treatment using conventional creams and gels. These formulations show various disadvantages like poor skin permeation, allergic reactions, and repeated use decreasing patient compliance. Objectives: The present work involved formulation, statistical optimization, and characterization of nanostructured lipid carriers (NLCs) for efficient topical delivery of hydroquinone (HQ) for hyperpigmentation treatment. Methods: The NLCs were optimized exploring Box–Behnken design (BBD) using three independent variables and two dependent variables. Formulation having the minimum size and maximum drug entrapment was considered as optimized formulation. Optimized formulation was evaluated for drug release followed by its freeze-drying. The freeze-dried formulation was subjected to differential scanning calorimetry (DSC) analysis, X-raydiffraction (XRD) analysis, and Fourier transform-infrared spectroscopy (FT-IR) analysis. Furthermore, NLCs based gel was prepared by using Carbopol 934 as a gelling agent. NLCs based gel was evaluated for skin permeation, skin retention, and skin distribution (through confocal microscopic analysis) using pig ear skin. Results: Optimized NLCs showed smaller particle size [(271.9 ± 9) nm], high drug entrapment [(66.4 ± 1.2) %], tolerable polydispersity index (PDI) (0.221 ± 0.012), and zeta potential [(-25.9± 1.2) mV]. The FT-IR analysis revealed excellent compatibility between HQ and other excipients. The Carbopol 934 gel containing NLCs showed high transdermal flux [(163 ± 16.2) μg/cm2/h], permeability coefficient (0.0326 ± 0.0016), and skin permeation enhancement ratio (3.7 ± 0.4) compared to marketed cream of HQ. The results of confocal microscopic (CLSM) analysis revealed the accumulation of optimized NLCs in the lower epidermal layers of skin. Conclusion: NLCs based gel was considered effective in the topical delivery of HQ to treat hyper-pigmentation due high skin permeation, skin retention, and prolonged release of HQ.


2020 ◽  
Vol 18 ◽  
Author(s):  
Niranjan Kaushik ◽  
Nitin Kumar ◽  
Anoop Kumar ◽  
Vikas Sharma

Background: Fungal infections are opportunistic infections that become a serious problem to human health. Objective: Considering the antifungal potential of triazole nucleus, the study was carried out with the objective to synthesize some novel triazole derivatives with antifungal potential. Method: 1,2,4-triazole derivatives were synthesized via a two step reaction (reported earlier). The first step involves reaction of substituted benzoic acid with thiocarbohydrazide to form 4-amino-3-(substituted phenyl)-5-mercapto-1, 2, 4-triazole derivatives (1a-1k) while in second step, synthesized compounds (1a-1k) were then subsequently treated with substituted acetophenone to yield substituted (4-methoxyphenyl-7H-[1, 2, 4] triazolo [3, 4-b][1,3,4] thiadiazine derivatives (2a-2k). All synthesized compounds were characterized by IR, 1H NMR, and Mass spectral data analysis and were screened for their antifungal properties against different fungal strains i.e. Candida tropicalis (ATCC-13803, ATCC-20913), Candida albicans (ATCC-60193), Candida inconspicua (ATCC-16783) and Candida glabrata (ATCC-90030, ATCC-2001). Results: Compound 2d displayed better percentage inhibition (26.29%, 24.81%) than fluconazole (24.44%, 22.96%) against ATCC-16783, ATCC-2001 fungal strains respectively at 100µg/ml. Compound 2f also displayed better percentage inhibition (28.51%) against ATCC-90030 as compared to fluconazone (27.4%) at 200 µg/ml. Similarly, compounds 2e and 2j also exhibited better antifungal properties than fluconazole at 200µg/ml. Compound 2e was found most potent against ATCC13803 (30.37%) and ATCC-90030 (30.37%) fungal strains as compared to fluconazole (28.14%, 27.4%) at 200 µg/ml respectively whereas compound 2j exhibited better antifungal activity (28.51%) against ATCC-60193 than fluconazole (27.7%) at 200 µg/ml. Conclusion: The results were in accordance with our assertions for triazole derivatives, as all compounds displayed moderate to good antifungal activity.


Drug Research ◽  
2020 ◽  
Author(s):  
Preeti Gupta ◽  
Antesh Kumar Jha ◽  
Mahesh Prasad ◽  
Poonam Kushwaha

AbstractFungal infections have become a subject of great concern and the incidence of fungal infections is increasing, presenting an enormous challenge to healthcare professionals. Since most of the fungal infections are occurring over the skin, the treatment option of these infections always involves topical application. However, in topical delivery drug reaches into systemic circulation through different barriers of skin. Nevertheless, due to the low permeability, skin restricts the movement of many drugs. Hence, a delivery system is required, which deliver the medicament into the skin layers or through the skin and into the systemic circulation. Ethosomes or Soft malleable vesicles are the novel lipid vesicular carrier that offer improved skin permeability and efficient delivery due to their structure and composition. They contain high concentration of ethanol, which increases the fluidity of the skin. Therefore, in the present paper, we have explored the utility of ethosomal systems in the topical treatment of fungal infections. Structure, compositions types, mechanism and techniques of preparation of ethosome also discussed in the paper.


Signals ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 392-412
Author(s):  
Geetika Aggarwal ◽  
Yang Wei

During the pregnancy, fetal electrocardiogram (FECG) is deployed to analyze fetal heart rate (FHR) of the fetus to indicate the growth and health of the fetus to determine any abnormalities and prevent diseases. The fetal electrocardiogram monitoring can be carried out either invasively by placing the electrodes on the scalp of the fetus, involving the skin penetration and the risk of infection, or non-invasively by recording the fetal heart rate signal from the mother’s abdomen through a placement of electrodes deploying portable, wearable devices. Non-invasive fetal electrocardiogram (NIFECG) is an evolving technology in fetal surveillance because of the comfort to the pregnant women and being achieved remotely, specifically in the unprecedented circumstances such as pandemic or COVID-19. Textiles have been at the heart of human technological progress for thousands of years, with textile developments closely tied to key inventions that have shaped societies. The relatively recent invention of smart textiles is set to push boundaries again and has already opened the potential for garments relevant to medicine, and health monitoring. This paper aims to discuss the different technologies and methods used in non-invasive fetal electrocardiogram (NIFECG) monitoring as well as the potential and future research directions of NIFECG in the smart textiles area.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 923
Author(s):  
Shadab Md ◽  
Nabil A. Alhakamy ◽  
Hibah M. Aldawsari ◽  
Mohammad Husain ◽  
Nazia Khan ◽  
...  

Plumbagin (PLM) is a phytochemical which has shown cytotoxicity against of cancer cells both in vitro and in vivo. However, the clinical application of PLM has been hindered due to poor aqueous solubility and low bioavailability. The aim of the present study was to develop, optimize and evaluate PLM-loaded glycerosome (GM) gel and compare with conventional liposome (CL) for therapeutic efficacy against skin cancer. The GM formulations were optimized by employing design expert software by 3-level 3-factor design. The prepared GMs were characterized in vitro for vesicle size, size distribution, zeta potential, vesicle deformability, drug release, skin permeation, retention, texture, antioxidant and cytotoxicity activities. The optimized formulation showed a vesicle size of 119.20 ± 15.67 nm with a polydispersity index (PDI) of 0.145 ± 0.02, the zeta potential of −27 ± 5.12 mV and entrapment efficiency of 76.42 ± 9.98%. The optimized PLM-loaded GM formulation was transformed into a pre-formed gel which was prepared using Carbopol 934 polymer. The drug diffusion fluxes of CL gel and GM-loaded gel were 23.31 ±6.0 and 79.43 ± 12.43 µg/ cm2/h, respectively. The result of texture analysis revealed the adequate hardness, cohesiveness, consistency, and viscosity of the developed GM-loaded gel compared to CL gel. The confocal images showed that glycerosomal gel has deeper skin layer penetration as compared to the control solution. GM-loaded gel treated rat skin showed significantly (p < 0.05) higher drug accumulation in the dermis, higher cytotoxicity and higher antioxidant activity as compared to CL gel and PLM suspension. Thus, findings revealed that novel GM-loaded gel could be potential carriers for therapeutic intervention in skin cancer.


Sign in / Sign up

Export Citation Format

Share Document