Aqueous extract of Acalypha indica leaves for the treatment of Psoriasis: In-vitro studies

2017 ◽  
Vol 6 (04) ◽  
pp. 5360 ◽  
Author(s):  
Rajkiran Reddy Banala ◽  
Satish Kumar Vemuri ◽  
Gurava Reddy A.V. ◽  
Subbaiah G.P.V.*

Psoriasis is a chronic inflammatory skin disorder characterized by rapid proliferation of keratinocytes and incomplete keratinization. Discovery of safer and more effective anti-psoriatic drugs remains an area of active research at the present time. A431 and B16-F10 cell lines were used as in vitro models. In the present study, we aimed at assessing the Anti-psoriatic activity of aqueous extract of Acalypha indica. We analyzed the efficiency of A. indica leaf extract in inducing cell death and apoptosis in these cell lines. The cell death (Propidium iodide) and apoptosis (Annexin V) was assessed by fluorescence studies and we observed 80% of cell death and 75% of apoptosis in both cell lines. Therefore, this in vitro study suggested that the leaf extract is capable of serving as anti-psoriasis agent or compound.

2019 ◽  
Vol 20 (15) ◽  
pp. 1288-1308
Author(s):  
Tahir Maqbool ◽  
Sana J. Awan ◽  
Sabeen Malik ◽  
Faheem Hadi ◽  
Somia Shehzadi ◽  
...  

Background: Natural product with apoptotic activity could serve as a potential new source for anti-cancer medicine. Numerous phytochemicals from plants have shown to exert antineoplastic effects via programmed cell death (apoptosis). Cancer is one of the leading causes of death in prosperous countries. The subject study was intended to evaluate the anticancer properties of Kalonji extracts against cancer cell lines HeLa and HepG2 and normal cell lines BHK and VERO were used as normal controls. Materials & Methods: For the evaluation of anti-proliferative effects, cell viability and cell death in all groups of cells were evaluated via MTT, crystal violet and trypan blue assays. For the evaluation of angiogenesis, Immunocytochemistry and ELISA of VEGF were done. Immunocytochemistry and ELISA of Annexin-V and p53 were performed for the estimation of apoptosis in all groups of cells. Furthermore, LDH assay, antioxidant enzymes activity (GSH, APOX, CAT and SOD) and RT-PCR with proliferative and apoptotic markers along with internal control were also performed. Cancer cells of both cell lines HepG2 and HeLa cells showed reduced viability, angiogenesis and proliferation with increased apoptosis when treated with Kalonji extracts. Whereas anti-oxidative enzymes show enhanced levels in treated cancer cells as compared to untreated ones. Conclusion: It was observed that Kalonji extracts have the ability to induce apoptosis and improve the antioxidant status of HeLa and HepG2 cells. They can also inhibit the proliferation and angiogenesis in both these cancer cell lines.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4459-4459
Author(s):  
Morris Kletzel ◽  
Sarah C. Tallman ◽  
Marie Olszewski ◽  
Wei Huang

Abstract Objective: While busulfan is a commonly used chemotherapeutic agent in the treatment of many hematological diseases, its effectiveness against neuroblastoma is still in question. This study aims to assess the degree of apoptosis and cell death in neuroblastoma cell lines and primary neuroblastoma tumors when exposed to varying doses of busulfan. Materials and Methods: Cultures from established cell lines SKN-SH, SKN-DOX-R, IMR-5, and NGP (n=4), as well as cultures from primary tumors (n=2) were seeded at 106 cells/ml in RPMI640 supplemented with 10% fetal bovine serum (FBS) and transferred to 24-well plates, where cells were exposed to 1ml of busulfan at 0, 0.001, 0.005, 0.01, 0.05, and 0.1mg/ml per well. Cells were incubated at 37°C in a humidified atmosphere of 5% CO2 for 72 hours. Wells were sacrificed after 0, 6, 24, 48 and 72 hours and tested with Annexin V and PI; 10,000 events were measured by flow cytometry. The percentage of apoptotic and dead cells was plotted in a graph and a t-test was performed against the untreated control. Results: After 24 hours, there was a significant decrease in cell viability of each dose when compared to the control untreated cells (p<0.005). 24 Hour % Cell Viability for Varying Doses of Busulfan (mg/ml) Dose 0 Dose 0.001 Dose 0.005 Dose 0.01 Dose 0.05 Dose 0.1 Mean 66.1 44.4 40.3 40.7 37.7 39 SEM 5.56 5.17 5.96 6.17 6.03 5.60 Median 65 33.5 38 39 37 31 Range 39 to 97 14 to 87 4 to 89 6 to 93 4 to 77 5 to 88 The overall mean decrease in cell viability when compared to the control was 25.7%. However, there were only modest differences in effectiveness when comparing the doses, with an average of only 5–7% difference between doses. Further, there was much variability between the different cell lines, some with changes in apoptosis and cell death of over 50%, while other lines showed no changes at all. Limited differences were seen after 6 hours, and after 72 hours any effect of busulfan was masked by cell death due to other factors, as seen through increased cell death in untreated cells. Conclusion: Busulfan induced apoptosis and cell death in vitro in neuroblastoma cell lines at a mean of 76.43% for non-resistant lines, 59.33% for primary tumors and 35% for resistant cell lines (at middle dose 0.01mg/ml). The resistance of certain cell lines confirms the difficulties of treating multi-drug resistant cells in often heterogeneous neuroblastoma tumors. That some cell lines were responsive shows the potential of using busulfan to treat neuroblastoma in the future.


2005 ◽  
Vol 25 (2) ◽  
pp. 154-162 ◽  
Author(s):  
Joëlle A Hillion ◽  
Kenzo Takahashi ◽  
Dragan Maric ◽  
Christl Ruetzler ◽  
Jeffery L Barker ◽  
...  

Although ischemic tolerance has been described in a variety of primary cell culture systems, no similar in vitro models have been reported with any cell line. A model of ischemic preconditioning in the rat pheochromocytoma PC12 cell line is described here. When compared to nonpreconditioned cells, preexposure of PC12 cells to 6 hours of oxygen and glucose deprivation (OGD) significantly increased cell viability after 15 hours of OGD 24 hours later. Flow cytometry analysis of cells labeled with specific markers for apoptosis, Annexin V, and Hoechst 33342, and of DNA content, revealed that apoptosis is involved in OGD-induced PC12 cell death and that preconditioning of the cells mainly counteracts the effect of apoptosis. Immunocytochemistry of caspase-3, a central executioner in the apoptotic process, further confirmed the activation of apoptotic pathways in OGD-induced PC12 cell death. This model may be useful to investigate the cellular mechanisms involved in neuronal transient tolerance following ischemia.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Cansu Tekin ◽  
Hella L. Aberson ◽  
Maarten F. Bijlsma ◽  
C. Arnold Spek

Abstract Background Pancreatic ductal adenocarcinoma (PDAC) is a grim disease with high mortality rates. Increased macrophage influx in PDAC is a common hallmark and associated with poor prognosis. Macrophages have high cellular plasticity, which can differentiate into both anti- and pro-tumorigenic properties. Here, we investigated how naïve (M0) macrophages differ from other macrophages in their anti-tumorigenic activities. Methods In vitro BrdU proliferation and Annexin V cell death analyses were performed on PANC-1 and MIA PaCa-2 PDAC cell lines exposed to conditioned medium of different macrophage subsets. Macrophage secreted factors were measured by transcript analysis and ELISA. Therapeutic antibodies were used to functionally establish the impact of the identified cytokine on PDAC proliferation. Results Proliferation and cell death assays revealed that only M0 macrophages harbor anti-tumorigenic activities and that M1, M2, and TAMs do not. mRNA analysis and ELISA results suggested TNF-α as a potential candidate to mediate M0 macrophage induced cell death. To demonstrate the importance of TNF-α in M0 macrophage-induced cell death, PANC-1 and MIA PaCa-2 cell-lines were exposed to M0 macrophage conditioned medium in the presence of the TNF-α inhibitor Infliximab, which effectively diminished the anti-tumor activities of M0 macrophages. Conclusion Newly tumor-infiltrated naive M0 macrophages exert anti-tumorigenic activities via TNF-α secretion. Their subsequent differentiation into either M1, M2, or TAM subsets reduces TNF-α levels, thereby abolishing their cytotoxic activity on PDAC cells. These data suggest that reestablishing TNF-α secretion in differentiated macrophages might yield a therapeutic benefit.


Toxins ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 506 ◽  
Author(s):  
Tony Haykal ◽  
Peter Nasr ◽  
Mohammad H. Hodroj ◽  
Robin I. Taleb ◽  
Rita Sarkis ◽  
...  

Annona cherimola Mill is a large green fruit with black seeds widely known to possess toxic properties due to the presence of Annonaceous acetogenins. The present study investigates the anti-cancer properties of an Annona cherimola Mill ethanolic seed extract on Acute Myeloid Leukemia (AML) cell lines in vitro and elucidates the underlying cellular mechanism. The anti-proliferative effects of the extract on various AML cell lines and normal mesenchymal cells (MSCs) were assessed using WST-1 viability reagent. The pro-apoptotic effect of the extract was evaluated using Annexin V/PI staining and Cell Death ELISA. The underlying mechanism was deciphered by analyzing the expression of various proteins using western blots. Treatment with an A. cherimola seed ethanolic extract promotes a dose- and time-dependent inhibition of the proliferation of various AML cell lines, but not MSCs. Positive Annexin V staining, as well as DNA fragmentation, confirm an increase in apoptotic cell death by upregulating the expression of pro-apoptotic proteins which control both intrinsic and extrinsic pathways of apoptosis. GC/MS analysis revealed the presence of phytosterols, in addition to other bioactive compounds. In conclusion, Annona cherimola Mill seed extract, previously known to possess a potent toxic activity, induces apoptosis in AML cell lines by the activation of both the extrinsic and the intrinsic pathways.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 3936-3936
Author(s):  
Yongwei Su ◽  
Xinyu Li ◽  
Holly Edwards ◽  
Lisa Polin ◽  
Juiwanna Kushner ◽  
...  

Abstract Although standard induction therapy initially elicits a promising response in the majority of acute myeloid leukemia (AML) patients, the majority relapse. Leukemia stem cells (LSCs) that survive chemotherapy are believed to be responsible for AML relapse. Therefore, new therapies that eliminate LSCs are desperately needed. ONC201 is a TRAIL inducer and the founding member of the imipridone family. It has been shown to induce apoptosis in LSCs (Ishizawa et al, Science Signaling. 2016; 9:ra17). ONC201 was chemically modified to increase the potency and selectivity against cancer cells, resulting in the new analog ONC213. In this study, we investigated the antileukemic activity and the underlying molecular mechanism of ONC213 in preclinical AML models. ONC213 activity in AML cell lines and primary AML patient samples was first tested in vitro. MTT assay results revealed that ONC213 IC50s ranged from 91.7 nM to 2.4 µM in AML cell lines and primary AML patient samples, which are achievable in vivo based on results from a PK study in mice (a single dose of 50 and 100 mg/kg ONC213 resulted in peak plasma concentrations of 3.7 μM and 8 μM, respectively). Annexin V/propidium iodide staining and flow cytometry analysis results showed variable responses for the AML cell lines tested. After 48 h treatment with 500 nM ONC213, striking induction of cell death in MOLM-13 and MV4-11 cells was detected (at least 72% Annexin V+ cells), while THP-1 and U937 cells showed little to no increase in Annexin V+ cells (6-11%). Similar results were obtained in primary AML patient samples. In contrast to the 48 h treatment of THP-1 and U937 cells, increasing the treatment duration to 120 h resulted in greater than 50% Annexin V+ cells, suggesting that a longer exposure time is necessary in some cell lines. In MV4-11 and MOLM-13 cells, initiation of cell death was detected 8 to 12 h post ONC213 treatment. Colony formation assays revealed that ONC213 treatment significantly reduced colony formation capacity of primary AML patient samples to less than 5% compared to vehicle control, while having no significant effect on normal hematopoietic progenitor cells. A primary AML patient sample was treated with or without ONC213 for 48 h, transplanted into NSG mice, and ten weeks later bone marrow was harvested and human CD45+ cells were measured. ONC213 treatment significantly reduced human AML engraftment compared to vehicle control (0.6% vs. 21.3%; p<0.05), demonstrating that ONC213 kills LSCs in vitro. Next, we examined in vivo efficacy of ONC213 against an AML cell line derived xenograft mouse model. MV4-11 cells were injected into NSGS mice through the tail vein. Three days post-injection, the mice were randomized into vehicle control or 125 mg/kg ONC213 cohorts (5 mice per cohort) and treated daily for 8 days. Modest weight loss was noted but was entirely manageable. ONC213 treatment extended the survival of mice by 88% (median survival 62 vs 33 days). Unlike ONC201, ONC213 treatment of AML cells did not increase the expression of TRAIL. Interestingly, RNAseq results showed that 500 nM ONC213 treatment for 48 h downregulated 33 mRNAs in the oxidative phosphorylation (OXPHOS) pathway, suggesting that ONC213 treatment decreases OXPHOS in AML cells. Thus far, six of the downregulated mRNAs (UQCRQ, SDHA, COX6C, NDUFS5, ATP5D, and NDUFB1) were verified by real-time RT-PCR after both 8 h and 48 h ONC213 treatment. LSCs have been shown to be highly reliant on OXPHOS, while normal hematopoietic stem cells and some bulk AML cells can switch to glycolysis for ATP production during times of OXPHOS inhibition. Thus, ONC213 may kill LSCs through inhibition of OXPHOS. In addition to downregulation of OXPHOS related genes, we found that ONC213 treatment downregulates Mcl-1. Since Mcl-1 mediates resistance to the promising Bcl-2-selective inhibitor ABT-199 (Venetoclax) and inhibition of Bcl-2 impairs OXPHOS, ONC213 would likely synergize with ABT-199 in AML cells. Indeed, combined treatment resulted in striking synergistic induction of apoptosis in both AML cell lines and primary patient samples. Enhanced cell death was detected 8 h post combination treatment in both MOLM-13 and MV4-11 cells. Results from colony formation assays revealed that the combination spares normal hematopoietic progenitor cells. Taken together, ONC213 is active as a single agent and in combination with ABT-199 in AML. Disclosures Allen: Oncoceutics: Employment. Stogniew:Oncoceutics: Employment. Prabhu:Oncoceutics: Employment. Ge:MEI Pharma: Research Funding.


2017 ◽  
pp. 709-714 ◽  
Author(s):  
P. SVOBODA ◽  
E. KŘÍŽOVÁ ◽  
K. ČEŇKOVÁ ◽  
K. VÁPENKOVÁ ◽  
J. ZÍDKOVÁ ◽  
...  

Visfatin is a multi-functional molecule that can act intracellularly and extracellularly as an adipokine, cytokine and enzyme. One of the main questions concerning visfatin is the mechanism of its secretion; whether, how and from which cells visfatin is released. The objective of this in vitro study was to observe the active secretion of visfatin from 3T3-L1 preadipocytes and adipocytes, HepG2 hepatocytes, U-937, THP-1 and HL-60 monocytes and macrophages. The amount of visfatin in media and cell lysate was always related to the intracellular enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), to exclude the passive release of visfatin. Visfatin was not found in media of 3T3-L1 preadipocytes. In media of 3T3-L1 adipocytes and HepG2 hepatocytes, the ratio of visfatin to the amount of GAPDH was identical to cell lysates. Hence, it is likely that these cells do not actively secrete visfatin in a significant manner. However, we found that significant producers of visfatin are differentiated macrophages and that the amount of secreted visfatin depends on used cell line and it is affected by the mode of differentiation. Results show that 3T3-L1 adipocytes and HepG2 hepatocytes released visfatin only passively during the cell death. U-937 macrophages secrete visfatin in the greatest level from all of the tested cell lines.


2020 ◽  
Author(s):  
Cansu Tekin ◽  
Hella L Aberson ◽  
Maarten F Bijlsma ◽  
C. Arnold Spek

Abstract Background: Pancreatic ductal adenocarcinoma (PDAC) is a grim disease with high mortality rates. Increased macrophage influx in PDAC is a common hallmark and associated with poor prognosis. Macrophages have high cellular plasticity, which can differentiate into both anti- and pro-tumorigenic properties. Here, we investigated how naïve (M0) macrophages differ from other macrophages in their anti-tumorigenic activities.Methods: In vitro BrdU proliferation and Annexin V cell death analyses were performed on PANC-1 and MIA PaCa-2 PDAC cell lines exposed to conditioned medium of different macrophage subsets. Macrophage secreted factors were measured by transcript analysis and ELISA. Therapeutic antibodies were used to functionally establish the impact of the identified cytokine on PDAC proliferation.Results: Proliferation and cell death assays revealed that only M0 macrophages harbor anti-tumorigenic activities and that M1, M2, and TAMs do not. mRNA analysis and ELISA results suggested TNF-α as a potential candidate to mediate M macrophage induced cell death. To demonstrate the importance of TNF-α in M macrophage-induced cell death, PANC-1 and MIA PaCa-2 cell-lines were exposed to M macrophage conditioned medium in the presence of the TNF-α inhibitor Infliximab, which effectively diminished the anti-tumor activities of M0 macrophages.Conclusion: Newly tumor-infiltrated naive M0 macrophages exert anti-tumorigenic activities via TNF-α secretion. Their subsequent differentiation into either M1, M2, or TAM subsets reduces TNF-α levels, thereby abolishing their cytotoxic activity on PDAC cells. These data suggest that reestablishing TNF-α secretion in differentiated macrophages might yield a therapeutic benefit.


2020 ◽  
Vol 20 (9) ◽  
pp. 1087-1093
Author(s):  
Hesam A. Atashi ◽  
Hamid Z. Arani ◽  
Amirhossein Shekarriz ◽  
Hamidreza Nazari ◽  
Amirhossein Zabolian ◽  
...  

Background: Osteosarcoma (OS) is known as the malignant tumors in the bone. Cyanidin 3-OGlucoside (C3G) has a potential to induce the apoptotic cell death in different cancer cells; however, the mechanisms of action for C3G have not been clarified yet. Objective: In this study, the apoptotic effects of C3G on three different osteosarcoma cell lines including Saso-2, MG-63, and G-292 (clone A141B1) were investigated. Methods: The 24-hr IC50 of C3G for Saso-2, G-292, and MG-63 cells was evaluated by the MTT assay. Apoptosis induction in these cell lines after treatment with the C3G was approved by the Annexin V/PI flow cytometry. Changes at the mRNA expression level of PPARγ, P21, Bax, and Bcl-xl genes were investigated by real-time Polymerase Chain Reaction (PCR) technique, and P21 expression was further confirmed by the western blotting. Results: The MTT assay results demonstrated that the 24-hr IC50 of C3G was equal to 110μg/ml for Saso-2 and G-292 cells while it was about 140μg/ml for the MG-63 cells. The results of real-time PCR clearly showed that treatment of the cells with 24hrs IC50 of C3G caused the upregulation of PPARγ, P21, and Bax genes. Moreover, western blot analysis confirmed that P21 protein overexpressed endogenously after treatment of the cells with the C3G, and it was more upregulated in the MG-63 cells compared to the other cell lines. Conclusion: According to the findings of the study, the C3G is a novel anti-osteosarcoma agent with the ability to induce the apoptosis in different osteosarcoma cells through upregulation of the PPARγ and P21 genes.


Author(s):  
Carl Ammoury ◽  
Maria Younes ◽  
Marianne El Khoury ◽  
Mohammad H. Hodroj ◽  
Tony Haykal ◽  
...  

Abstract Background The edible fruit Annona cherimola has previously shown many nutritional and medicinal properties. The current study evaluates the anti-cancer and anti-proliferative properties of Annona cherimola ethanolic leaf extract (AELE) on Acute Myeloid Leukemia (AML) cell lines cultured in vitro (Monomac-1 and KG-1). Methods The anti-proliferative effect of A. cherimola ethanolic leaf extract was evaluated via cell viability assay. Its pro-apoptotic effect was assessed through Cell Death ELISA and dual Annexin V/PI staining. To further investigate the molecular mechanism by which the extract promoted apoptosis and inhibited the proliferation of the AML cells used, apoptotic protein expression was determined through western blots. Extract composition was elucidated by Gas Chromatography-Mass Spectrometry (GC-MS). Results Our results showed that the treatment with A. cherimola ethanolic leaf extract exhibited an inhibitory effect on the proliferation of both cancer cell lines used in a dose- and time-dependent manner, with no toxic effects on normal mononuclear cells (MNCs) isolated from human bone marrow. This effect was mediated by DNA fragmentation and apoptosis, as revealed by Cell Death ELISA and dual Annexin V/PI staining. Western blot analysis revealed a Bax/Bcl2 dependent mechanism of apoptosis, as well as PARP cleavage, confirming the apoptotic results observed previously. These effects may be attributed to the presence of terpenes which constitute a large component of the leafy extract, as revealed via GC-MS. Conclusion All the data presented in our study show that the terpene-rich A. cherimola ethanolic leaf extract exhibits an anti-proliferative and pro-apoptotic effect on the AML cell lines used.


Sign in / Sign up

Export Citation Format

Share Document