scholarly journals The pro-apoptotic effect of a Terpene-rich Annona cherimola leaf extract on leukemic cell lines

Author(s):  
Carl Ammoury ◽  
Maria Younes ◽  
Marianne El Khoury ◽  
Mohammad H. Hodroj ◽  
Tony Haykal ◽  
...  

Abstract Background The edible fruit Annona cherimola has previously shown many nutritional and medicinal properties. The current study evaluates the anti-cancer and anti-proliferative properties of Annona cherimola ethanolic leaf extract (AELE) on Acute Myeloid Leukemia (AML) cell lines cultured in vitro (Monomac-1 and KG-1). Methods The anti-proliferative effect of A. cherimola ethanolic leaf extract was evaluated via cell viability assay. Its pro-apoptotic effect was assessed through Cell Death ELISA and dual Annexin V/PI staining. To further investigate the molecular mechanism by which the extract promoted apoptosis and inhibited the proliferation of the AML cells used, apoptotic protein expression was determined through western blots. Extract composition was elucidated by Gas Chromatography-Mass Spectrometry (GC-MS). Results Our results showed that the treatment with A. cherimola ethanolic leaf extract exhibited an inhibitory effect on the proliferation of both cancer cell lines used in a dose- and time-dependent manner, with no toxic effects on normal mononuclear cells (MNCs) isolated from human bone marrow. This effect was mediated by DNA fragmentation and apoptosis, as revealed by Cell Death ELISA and dual Annexin V/PI staining. Western blot analysis revealed a Bax/Bcl2 dependent mechanism of apoptosis, as well as PARP cleavage, confirming the apoptotic results observed previously. These effects may be attributed to the presence of terpenes which constitute a large component of the leafy extract, as revealed via GC-MS. Conclusion All the data presented in our study show that the terpene-rich A. cherimola ethanolic leaf extract exhibits an anti-proliferative and pro-apoptotic effect on the AML cell lines used.

Toxins ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 506 ◽  
Author(s):  
Tony Haykal ◽  
Peter Nasr ◽  
Mohammad H. Hodroj ◽  
Robin I. Taleb ◽  
Rita Sarkis ◽  
...  

Annona cherimola Mill is a large green fruit with black seeds widely known to possess toxic properties due to the presence of Annonaceous acetogenins. The present study investigates the anti-cancer properties of an Annona cherimola Mill ethanolic seed extract on Acute Myeloid Leukemia (AML) cell lines in vitro and elucidates the underlying cellular mechanism. The anti-proliferative effects of the extract on various AML cell lines and normal mesenchymal cells (MSCs) were assessed using WST-1 viability reagent. The pro-apoptotic effect of the extract was evaluated using Annexin V/PI staining and Cell Death ELISA. The underlying mechanism was deciphered by analyzing the expression of various proteins using western blots. Treatment with an A. cherimola seed ethanolic extract promotes a dose- and time-dependent inhibition of the proliferation of various AML cell lines, but not MSCs. Positive Annexin V staining, as well as DNA fragmentation, confirm an increase in apoptotic cell death by upregulating the expression of pro-apoptotic proteins which control both intrinsic and extrinsic pathways of apoptosis. GC/MS analysis revealed the presence of phytosterols, in addition to other bioactive compounds. In conclusion, Annona cherimola Mill seed extract, previously known to possess a potent toxic activity, induces apoptosis in AML cell lines by the activation of both the extrinsic and the intrinsic pathways.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Prisca Bustamante Alvarez ◽  
Alexander Laskaris ◽  
Alicia A. Goyeneche ◽  
Yunxi Chen ◽  
Carlos M. Telleria ◽  
...  

Abstract Background Uveal melanoma (UM), the most prevalent intraocular tumor in adults, is a highly metastatic and drug resistant lesion. Recent studies have demonstrated cytotoxic and anti-metastatic effects of the antiprogestin and antiglucocorticoid mifepristone (MF) in vitro and in clinical trials involving meningioma, colon, breast, and ovarian cancers. Drug repurposing is a cost-effective approach to bring approved drugs with good safety profiles to the clinic. This current study assessed the cytotoxic effects of MF in human UM cell lines of different genetic backgrounds. Methods The effects of incremental concentrations of MF (0, 5, 10, 20, or 40 μM) on a panel of human UM primary (MEL270, 92.1, MP41, and MP46) and metastatic (OMM2.5) cells were evaluated. Cells were incubated with MF for up to 72 h before subsequent assays were conducted. Cellular functionality and viability were assessed by Cell Counting Kit-8, trypan blue exclusion assay, and quantitative label-free IncuCyte live-cell analysis. Cell death was analyzed by binding of Annexin V-FITC and/or PI, caspase-3/7 activity, and DNA fragmentation. Additionally, the release of cell-free DNA was assessed by droplet digital PCR, while the expression of progesterone and glucocorticoid receptors was determined by quantitative real-time reverse transcriptase PCR. Results MF treatment reduced cellular proliferation and viability of all UM cell lines studied in a concentration-dependent manner. A reduction in cell growth was observed at lower concentrations of MF, with evidence of cell death at higher concentrations. A significant increase in Annexin V-FITC and PI double positive cells, caspase-3/7 activity, DNA fragmentation, and cell-free DNA release suggests potent cytotoxicity of MF. None of the tested human UM cells expressed the classical progesterone receptor in the absence or presence of MF treatment, suggesting a mechanism independent of the modulation of the cognate nuclear progesterone receptor. In turn, all cells expressed non-classical progesterone receptors and the glucocorticoid receptor. Conclusion This study demonstrates that MF impedes the proliferation of UM cells in a concentration-dependent manner. We report that MF treatment at lower concentrations results in cell growth arrest, while increasing the concentration leads to lethality. MF, which has a good safety profile, could be a reliable adjuvant of a repurposing therapy against UM.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4478-4478 ◽  
Author(s):  
Noriyoshi Iriyama ◽  
Hirotsugu Hino ◽  
Shota Moriya ◽  
Masaki Hiramoto ◽  
Yoshihiro Hatta ◽  
...  

Abstract Background:Multiple myeloma (MM) is a hematologic malignancy characterized by the accumulation of abnormal plasma cells in the bone marrow. D-type cyclins (CCNDs), an important family of cell cycle regulators, are thought to be implicated in multiple myeloma (MM) development because CCNDs are commonly expressed in myeloma cells. CCND is known to positively regulate the cell cycle from G1 to S-phase initiation by binding to cyclin-dependent kinase (CDK) 4/6, resulting in potentiation of myeloma cell growth. These findings suggest a possible role for CDK4/6-targeting therapy in MM, yet the details remain incompletely understood. In this regard, we investigated the biological activity of abemaciclib, a potent, highly selective CDK4/6 inhibitor, in myeloma cell lines, to elucidate the mechanisms underlying the involvement of the CCND-CDK4/6 complex in cell cycle regulation and survival. Methods:The effects of abemaciclib on myeloma cells were investigated using three myeloma cell lines, KMS12-PE (CCND1-positive and CCND2-negative), RPMI8226 (CCND1-negative and CCND2-positive), and IM-9 (both CCND1- and CCND2-positive). Cell growth was assessed by trypan blue exclusion assay. Cell cycle analysis was performed using propidium iodide (PI) and apoptosis was measured using annexin V/PI staining via flow cytometry. Cell cycle regulated proteins, including p21 and p27, and phosphorylated proteins, including STAT1, STAT3, ERK, JNK, p38, and AKT, were evaluated using a phospho-flow method. Autophagy was assessed using CYTO-ID via flow cytometry. PARP cleavage was investigated via western blotting. Clarithromycin, an antibiotic agent belonging to the macrolide class, was used as an autophagy inhibitor. Results:Abemaciclib inhibited myeloma cell growth in a dose-dependent manner in all the cell lines evaluated, with significant differences seen at a concentration of 320 nM. Annexin V/PI staining revealed that 1 μM abemaciclib showed little or no effect on apoptosis, but 3.2 μM abemaciclib induced apparent myeloma cell apoptosis, with an increase in both the early and late apoptotic fractions. Therefore, 1 and 3.2 μM of abemaciclib were used in subsequent experiments for the assessment of cell growth and apoptosis, respectively. Cell cycle analyses revealed that 1 μM abemaciclib increased the fraction of cells in G0/G1 phase and decreased the fraction in S-G2/M phase. Furthermore, this effect was associated with the upregulation of p21 and p27 in the evaluated myeloma cells. PARP cleavage was observed in KMS12-PE cells treated with 3.2 μM abemaciclib, but not 1 μM, suggesting a close connection between the degree of PARP cleavage and apoptosis in myeloma cells. Importantly, abemaciclib induced autophagy in a dose-dependent manner. However, no apparent inhibitory effect on the autophagy-related phosphorylated proteins STAT1 (Y701), STAT3 (Y705), ERK (T202/Y204), JNK (T183/Y185), p38 (T180/Y182), or AKT (Y315) was observed in myeloma cells treated with 3.2 μM abemaciclib. To investigate the role of abemaciclib-induced autophagy on myeloma cell apoptosis, we further assessed the apoptotic effect of 3.2 μM abemaciclib or 50 μg/mL clarithromycin, alone or in combination. Clarithromycin did not induce apoptosis of myeloma cells. Importantly, clarithromycin treatment in combination with abemaciclib attenuated the apoptotic effect of abemaciclib. Discussion & Conclusions: Although the underlying mechanisms conferring the level of CCND expression are known to differ greatly (e.g., CCND translocation, hyperdiploidy, or activation of upstream pathways of CCND transcription), the results of the current study indicate that the CCND-CDK4/6 complex is closely involved in myeloma cell growth and survival regardless of the CCND family member present. In addition, we demonstrate that abemaciclib exerts multiple effects, such as myeloma cell apoptosis, via the PARP pathway or autophagy, as well as cell cycle regulation. Because abemaciclib in combination with clarithromycin inhibits myeloma cell apoptosis, the autophagy induced by abemaciclib is considered to have a critical role in the induction of apoptosis, so-called "autophagic cell death." These results provide novel insights into a possible therapeutic approach using abemaciclib to target CDK4/6 in patients with MM, and offer new possibilities for combination therapy with CDK4/6 inhibitors and autophagy regulators. Disclosures Iriyama: Novartis: Honoraria, Speakers Bureau; Bristol-Myers Squibb: Honoraria, Speakers Bureau. Hatta:Novartis Pharma: Honoraria.


2021 ◽  
Author(s):  
Alexander Laskaris ◽  
Prisca Bustamante ◽  
Alicia A. Goyeneche ◽  
Carlos M. Telleria ◽  
Julia V Burnier

Abstract Background: Uveal melanoma (UM), the most prevalent intraocular tumor in adults, is a highly metastatic and drug resistant cancer. Recent studies have demonstrated cytotoxic and anti-metastatic effects of the antiprogestin and antiglucocorticoid mifepristone (MF) in vitro and in clinical trials involving meningioma, colon, breast, and ovarian cancers. Drug repurposing is a cost-effective approach to bring approved drugs with good safety profiles to the clinic. This current study assessed the cytostatic and cytotoxic effects of MF in human UM cell lines of different genetic backgrounds.Methods: The effects of incremental concentrations of MF (0, 5, 10, 20, 30 or 40 mM) on a panel of human UM primary (MP46, 92.1, MP41, MEL270) and metastatic (OMM2.5) cells were evaluated. Cells were incubated with MF for up to 72 hours before subsequent assays were conducted. Cellular functionality and viability were assessed by Cell Counting Kit-8, trypan blue exclusion assay, and quantitative label-free IncuCyte live-cell analysis. Cell death was analyzed by binding of Annexin V-FITC and/or propidium iodide (PI), caspases 3/7 activities, and DNA fragmentation. Additionally, the release of cell-free DNA was assessed by ddPCR, while the expression of progesterone and glucocorticoid receptors was determined by qPCR. Results: MF treatment reduced cellular proliferation and viability of all UM cell lines studied in a concentration-dependent manner. A reduction in cell growth was observed at lower concentrations of MF, with evidence of cell death at higher concentrations. A significant increase in Annexin V-FITC and PI-double positive cells, caspase 3/7 activities, DNA fragmentation, and cell-free DNA release suggests potent cytotoxicity of MF. None of the tested human UM cells expressed the classical progesterone receptor in the absence or presence of MF treatment, suggesting a mechanism independent of the modulation of the cognate nuclear progesterone receptor. In turn, all cells expressed non-classical progesterone receptors and the glucocorticoid receptor. Conclusion: This study demonstrates that MF impedes the proliferation of UM cells in a concentration-dependent manner. We report that MF treatment at lower concentrations results in cell growth arrest, while increasing the concentration leads to lethality. MF, which has a good safety profile, could be a reliable adjuvant of a repurposing therapy against UM.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3300-3300
Author(s):  
Seshagiri Duvvuri ◽  
Vivian Ruvolo ◽  
Duncan H. Mak ◽  
Kensuke Kojima ◽  
Marina Konopleva ◽  
...  

Abstract Abstract 3300 Background: Nutlin-3a is a small molecule inhibitor of MDM2 and has been shown to induce apoptosis and cell cycle arrest in various cancer models in a p53 dependent manner. Autophagy is a programmed cell death that can occur concurrently with apoptosis or in its absence. There is significant debate whether autophagy is a protective mechanism or a bona fide mechanism of cell death. While autophagy can function as tumor cell defense mechanism against cellular stress induced death, mutation/loss of alleles of certain genes regulating autophagy have been associated with development of cancer (e.g. Beclin-1 in breast cancer [Nature, 1999, 402: 672–676]). Multiple proteins involved in autophagy are transcriptional targets of p53 but Nutlin-3a has not been evaluated for its role in inducing autophagy. Here we present data suggesting that low dose Nutlin-3a induces autophagy in addition to apoptosis in leukemia cell lines in a p53 dependent manner. Methods and results: OCI-AML-3 cells (p53-WT) treated with Nutlin-3a (2.5 and 5.0μM for 48, 72 and 96 hrs) were stained with mono-dansyl-cadaverine (MDC), a dye that accumulates in acidic autophagic vacuoles. OCI-AML-3 cells showed increasing staining with MDC in a dose and time dependent fashion by both flow cytometry (54%, 57% and 51% MDC positive after treatment with Nutlin-3a 5.0μM for 48, 72 and 96 hrs) and by confocal microscopy. Nutlin-3a treated cells also were positive for Annexin-V (flow cytometry 22%, 26% and 36% at 48, 72 and 96 hrs time points), and some of the cells were double-positive for Annexin-V and MDC (9.2%, 5% and 7% at 48, 72 and 96 hrs) suggesting that both apoptosis and autophagy can occur simultaneously. Autophagy induction was confirmed by Transmission Electron Microscopy (TEM). Large, multiple autophagic vacuoles were observed in OCI-AML-3 cells treated with Nutlin-3a. OCI-AML-3 cells with stable p53 knockdown by shRNA or HL-60 cells (p53-null) did not show increased MDC staining by flow cytometry (both cell lines) or autophagic vacuoles by TEM (HL-60) after similar treatment. Western blot analysis showed increases in LC3-II and in conjugation of Atg5/12, early and late autophagy markers respectively, in OCI-AML-3 cells after treatment with Nutlin-3a. Increased expression of the autophagy markers (LC3-II and Atg 5/12 conjugate) were also seen by Western blot analysis in the ALL cell lines REH and NALM-6 (both p53-WT) after treatment with Nutlin-3a. Western blot and/or RT-PCR analysis showed upregulation of other p53 related proteins involved in autophagy e.g. DRAM, AMPK-β, LKB1, pLKB1 in OCI-AML-3 cells treated with Nutlin-3a. As mTOR/Akt pathway inhibits autophagy, analysis of mTOR targets showed downregulation of the total and phospho-ribosomal-S6-protein levels, whereas there was no change in total or phospho-4-EBP-1 levels. Knockdown of Beclin-1 (ATG6), one of the proteins required for initiation of the formation of autophagic vacuoles, caused reduction in autophagic vacuoles (MDC staining by confocal microscopy) in OCI-AML-3 and REH cells without affecting apoptosis induction (Annexin V by flow cytometry). Pharmacologic inhibition of late autophagy by Bafilomycin (10nM for 2 hours) reduced MDC staining in OCI-AML-3 cells treated with Nutlin-3a for 48 hrs (32% without and 9% with Bafilomycin) while having limited inhibition of apoptosis (Annexin V positive 42% without and 33% with Bafilomycin). Conclusion: Nutlin-3a induces autophagy in leukemia cells by a p53 dependent manner. We also demonstrate that autophagy could go hand-in-hand with apoptosis and in a fraction of cells both processes may occur concomitantly. Inhibition of autophagy does not necessarily enhance apoptosis. Disclosures: Andreeff: Roche: Research Funding. Borthakur:ASCO: Research Funding.


2022 ◽  
Vol 44 (1) ◽  
pp. 222-232
Author(s):  
Wen-Jung Chen ◽  
Wen-Wei Sung ◽  
Chia-Ying Yu ◽  
Yu-Ze Luan ◽  
Ya-Chuan Chang ◽  
...  

Testicular cancer (TC) is a rare malignancy worldwide and is the most common malignancy in males aged 15–44 years. The Wnt/β-catenin signaling pathway mediates numerous essential cellular functions and has potentially important effects on tumorigenesis and cancer progression. The search for drugs to inhibit this pathway has identified a small molecule, PNU-74654, as an inhibitor of the β-catenin/TCF4 interaction. We evaluated the therapeutic role of PNU-74654 in two TC cell lines, NCCIT and NTERA2, by measuring cell viability, cell cycle transition and cell death. Potential pathways were evaluated by protein arrays and Western blots. PNU-74654 decreased cell viability and induced apoptosis of TC cells, with significant increases in the sub G1, Hoechst-stained, Annexin V-PI-positive rates. PNU-74654 treatment of both TC cell lines inhibited the TNFR1/IKB alpha/p65 pathway and the execution phase of apoptosis. Our findings demonstrate that PNU-74654 can induce apoptosis in TC cells through mechanisms involving the execution phase of apoptosis and inhibition of TNFR1/IKB alpha/p65 signaling. Therefore, small molecules such as PNU-74654 may identify potential new treatment strategies for TC.


2017 ◽  
Vol 6 (04) ◽  
pp. 5360 ◽  
Author(s):  
Rajkiran Reddy Banala ◽  
Satish Kumar Vemuri ◽  
Gurava Reddy A.V. ◽  
Subbaiah G.P.V.*

Psoriasis is a chronic inflammatory skin disorder characterized by rapid proliferation of keratinocytes and incomplete keratinization. Discovery of safer and more effective anti-psoriatic drugs remains an area of active research at the present time. A431 and B16-F10 cell lines were used as in vitro models. In the present study, we aimed at assessing the Anti-psoriatic activity of aqueous extract of Acalypha indica. We analyzed the efficiency of A. indica leaf extract in inducing cell death and apoptosis in these cell lines. The cell death (Propidium iodide) and apoptosis (Annexin V) was assessed by fluorescence studies and we observed 80% of cell death and 75% of apoptosis in both cell lines. Therefore, this in vitro study suggested that the leaf extract is capable of serving as anti-psoriasis agent or compound.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3993-3993 ◽  
Author(s):  
Eriko Sada ◽  
Yasunobu Abe ◽  
Rie Ohba ◽  
Yoshimichi Tachikawa ◽  
Eriko Nagasawa ◽  
...  

Abstract Abstract 3993 Myelodysplastic syndrome (MDS) is a stem cell disorder characterized by ineffective hematopoiesis eventually leading to maturation arrest and leukemic transformation. It is well-known that VK2 induces differentiation and apoptosis in acute myeloid leukemia (AML) cell lines such as HL-60 and U937. Based on the studies of AML cell lines, several clinical trials of VK2 therapy for MDS patients have been conducted, and they showed improvement of cytopenia and reductions in blastic cells. Interestingly, hematological improvement was also observed in MDS patients with low percentage of blasts, and a differentiation/apoptosis-inducing effect on blasts alone could not explain this fact. Thus, the effects of VK2 on primary hematopoietic progenitors were examined from the perspective of differentiation and apoptosis. Mobilized CD34-positive cells from peripheral blood were used for the examination of myeloid lineage cells, and were cultured in IMDM containing 20% FCS, 20 ng/mL rhSCF, 20 ng/mL rhIL-3, with or without VK2. VK2 induced significant increase of CD11b-positive cells on day 4 (35.8% ± 12.3% with 10 μM VK2 vs. 10.7% ± 1.9% without VK2, P=0.0034) and day 6 (42.7% ± 6.3% with 10 μM VK2 vs. 24.1% ± 8.6% without VK2, P=0.0235). CD14-positive cells also increased significantly on day 4 (8.0% ± 0.3% with 10 μM VK2 vs. 4.1% ± 1.5% without VK2, P=0.008). Furthermore, after treatment with VK2, mRNA expression levels of both C/EBPα and PU.1 were elevated in a dose-dependent manner, and a significant increase was shown at 10 μM of VK2 on day 6. These results indicate that VK2 promotes the differentiation of myeloid progenitors through the upregulation of transcriptional factors C/EBPα and PU.1. The effect of VK2 on the apoptosis of myeloid progenitors was also examined. VK2 increased the number of apoptotic cells determined by Annexin V assay transiently on day 4 (58.9% ± 6.3% with 10 μM VK2 vs. 36.1% ± 2.8% without VK2, P<0.0001), but no significant increase was found on day 6. Next, human erythroid colony forming cells (ECFCs) purified from peripheral blood were used for the examination of erythroid lineage cells. ECFCs were cultured in IMDM containing 15% FCS, 15% human AB serum, 2 U/ml rhEPO, 20 ng/mL rhSCF, 10 ng/mL rhIL-3 (depleted on day 3), with or without VK2 (added on day 3). In ECFCs, VK2 did not affect the expressions of transferrin receptor (TfR) and glycophorin A (GPA) or the expression level of β-globin mRNA. However, the expression of GATA-1 mRNA increased significantly on day 7 with 10 μM of VK2. VK2 seems to have the potential to promote the differentiation of ECFCs through the upregulation of transcriptional factor GATA-1, although this differentiating effect on ECFCs was much smaller than that on myeloid progenitors. Furthermore, VK2 exhibited an anti-apoptotic effect on day 7 ECFCs under erythropoietin (EPO) -depletion. The percentage of apoptotic cells after 24 hours of EPO-depletion, which was determined by Annexin V-positivity, was significantly reduced with VK2 at low concentrations (0.5-2 μM) (76.9% ± 4.7% with 1 μM VK2 vs. 88.3% ± 1.7% without VK2, P=0.0019). VK2 lost its anti-apoptotic effect at concentrations greater than 5 μM. This anti-apoptotic effect was not shown in erythroleukemic cell line AS-E2. Finally, the expression of steroid and xenobiotic receptor (SXR), which was recently identified as a receptor of VK2, on primary hematopoietic cells was examined. SXR was expressed on myeloid progenitors, but not on erythroid progenitors. SXR agonist rifampicin also upregulated the expressions of CD11b and CD14 on myeloid progenitors. The differentiation-promoting effect of VK2 on myeloid progenitors seems to be mediated partly through SXR signaling. These results indicate that the effect of VK2 varies by cell type. The major effect on myeloid progenitors was promoting differentiation, whereas its anti-apoptotic effect seemed to be dominant in erythroid progenitors. Although the detailed mechanism of VK2's effect on differentiation or apoptosis of hematopoietic progenitors remains unknown, the effect of VK2 therapy in MDS patients could be partly explained by these mechanisms. Disclosures: No relevant conflicts of interest to declare.


2013 ◽  
Vol 31 (6_suppl) ◽  
pp. 270-270 ◽  
Author(s):  
Matteo Santoni ◽  
Consuelo Amantini ◽  
Maria Beatrice Morelli ◽  
Valerio Farfariello ◽  
Massimo Nabissi ◽  
...  

270 Background: Tyrosine kinase inhibitors (TKI), such as sunitinib, sorafenib and pazopanib, have replaced immunotherapy as the standard of care for metastatic renal cell carcinoma (mRCC). However, their use in sequential or combined strategies is limited by the lack of evidences on the ability of TKIs to induce cell death in cancer cells. Aim of our study was to evaluate the different mechanisms responsible of the cytotoxic effects induced in vitro by µM doses of sunitinib, sorafenib and pazopanib in 5637 and J82 bladder cancer (BC) cell lines. Methods: The viability of BC cell lines were tested by MTT assay. Autophagy was evaluated by western blot analysis with the anti-LC3 and anti-p62 antibodies, acridine orange staining and cytofluorimetric analysis. Necrosis and apoptosis, (ΔΨm) dissipation and ROS generation were determined by Annexin-V/PI, JC-1 and DCFDA staining, respectively and cytofluorimetric analysis. The cathepsin B activity was evaluated by ELISA. Finally, by mRNA estraction and RT-PCR array the pazopanib-induced gene profile expression was evaluated. Results: We found that treatment of 5637 and J82 BC cells with the three TKI agents markedly reduced cell viability. Treatment for 24 h with sunitinib and sorafenib at 20 µM dose, triggers an incomplete autophagy of BC cells. In addition, inhibition of autophagy induced by sunitinib and sorafenib triggers cell death of BC cells. Thus, sunitinib by imparing the cathepsin B activity induces lysosomal-dependent necrosis. Similarly, sorafenib by defective lysosomial degradation triggers ROS- and mitochondrial-dependent apoptosis. As regard to pazopanib, we first demonstrate that treatment of BC cells for 72 hrs (20 µM) induces autophagic Type II cell death, which was markedly reversed in a dose-dependent manner by 3MA and chloroquine autophagic inhibitors. Finally, pazopanib upregulates the mRNA expression of α-glucosidase (GAA) and TP73 belonging to the p53 tumor suppressor genes. Conclusions: Overall, our results showing different TKI-induced cell death mechanisms provide the rationale for the sequential use of these agents and the biological basis for novel molecularly targeted approaches.


Cells ◽  
2018 ◽  
Vol 7 (9) ◽  
pp. 131 ◽  
Author(s):  
Estefania Carrasco-Garcia ◽  
Isabel Martinez-Lacaci ◽  
Leticia Mayor-López ◽  
Elena Tristante ◽  
Mar Carballo-Santana ◽  
...  

Glioblastomas are highly resistant to radiation and chemotherapy. Currently, there are no effective therapies for this type of tumor. Signaling mechanisms initiated by PDGFR and IGF-1R are important in glioblastoma, and inhibition of the signal transduction pathways initiated by these receptors could be a useful alternative strategy for glioblastoma treatment. We have studied the effects of the PDGFR inhibitor JNJ-10198409 (JNJ) and the IGF-1R inhibitor picropodophyllin (PPP) in glioblastoma cell lines as well as in primary cultures derived from patients affected by this type of tumor. JNJ and PPP treatment blocked PDGFR and IGF-1R signaling respectively and reduced Akt and Erk 1/2 phosphorylation. Both inhibitors diminished cell proliferation, inducing a G2/M block of the cell cycle. Cell death induced by JNJ was caspase-dependent, Annexin-V positive and caused PARP cleavage, especially in T98 cells, suggesting an apoptotic mechanism. However, cell death induced by PPP was not completely inhibited by caspase inhibitors in all cell lines apart from LN-229 cells, indicating a caspase-independent mechanism. Several inhibitors targeted against different cell death pathways could not block this caspase-independent component, which may be a non-programmed necrotic mechanism. Apoptotic arrays performed in T98 and LN-229 cells upon JNJ and PPP treatment revealed that procaspase 3 levels were augmented by both drugs in T98 cells and only by JNJ in LN229-cells. Furthermore, XIAP and survivin levels were much higher in LN-229 cells than in T98 cells, revealing that LN-229 cells are more susceptible to undergo caspase-independent cell death mechanisms. JNJ and PPP combination was more effective than each treatment alone.


Sign in / Sign up

Export Citation Format

Share Document