scholarly journals Development of an Ischemic Tolerance Model in a PC12 Cell Line

2005 ◽  
Vol 25 (2) ◽  
pp. 154-162 ◽  
Author(s):  
Joëlle A Hillion ◽  
Kenzo Takahashi ◽  
Dragan Maric ◽  
Christl Ruetzler ◽  
Jeffery L Barker ◽  
...  

Although ischemic tolerance has been described in a variety of primary cell culture systems, no similar in vitro models have been reported with any cell line. A model of ischemic preconditioning in the rat pheochromocytoma PC12 cell line is described here. When compared to nonpreconditioned cells, preexposure of PC12 cells to 6 hours of oxygen and glucose deprivation (OGD) significantly increased cell viability after 15 hours of OGD 24 hours later. Flow cytometry analysis of cells labeled with specific markers for apoptosis, Annexin V, and Hoechst 33342, and of DNA content, revealed that apoptosis is involved in OGD-induced PC12 cell death and that preconditioning of the cells mainly counteracts the effect of apoptosis. Immunocytochemistry of caspase-3, a central executioner in the apoptotic process, further confirmed the activation of apoptotic pathways in OGD-induced PC12 cell death. This model may be useful to investigate the cellular mechanisms involved in neuronal transient tolerance following ischemia.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Peng Zhang ◽  
Jian Cui ◽  
Shirin Mansooridara ◽  
Atoosa Shahriyari Kalantari ◽  
Akram Zangeneh ◽  
...  

This article has been retracted. Please see the Retraction Notice for more detail: https://doi.org/10.1038/s41598-020-77741-4.


1995 ◽  
Vol 15 (7) ◽  
pp. 3470-3478 ◽  
Author(s):  
R Hopewell ◽  
E B Ziff

Heterodimerization of Max with the nuclear oncoprotein Myc and the differentiation-associated proteins Mad and Mxi1 enables these factors to bind E-box sites in DNA and control genes implicated in cell proliferation and differentiation. We show that in the PC12 pheochromocytoma tumor cell line, functional Max protein is not expressed because of the synthesis of a mutant max transcript. This transcript encodes a protein incapable of homo- or heterodimerization. Furthermore, the mutant Max protein, unlike wild-type Max, is incapable of repressing transcription from an E-box element. Synthesis of mutant max transcripts appears to be due to a homozygous chromosomal alteration within the max gene. Reintroduction of max into PC12 cells results in repression of E-box-dependent transcription and a reduction in growth rate, which may explain the loss of Max expression either during the growth of the pheochromocytoma or in subsequent passage of the PC12 cell line in vitro. Finally, the ability of these cells to divide, differentiate, and apoptose in the absence of Max demonstrates for the first time that these processes can occur via Max- and possibly Myc-independent mechanisms.


2013 ◽  
Vol 38 (5) ◽  
pp. 961-971 ◽  
Author(s):  
Jiao-Qi Wang ◽  
Jin-Ting He ◽  
Zhen-Wu Du ◽  
Zong-Shu Li ◽  
Yong-Feng Liu ◽  
...  

2014 ◽  
Vol 5 (6) ◽  
pp. 1125-1133 ◽  
Author(s):  
Chun-lin Liu ◽  
Te-chun Hsia ◽  
Mei-chin Yin

A nerve growth factor-differentiated PC12 cell line was used to investigate the protective effects ofs-methyl cysteine (SMC) at 1, 2, 4, and 8 μM under oxygen–glucose deprivation (OGD) conditions.


2019 ◽  
Vol 1718 ◽  
pp. 46-52 ◽  
Author(s):  
Minjie Tian ◽  
Xingjian Lin ◽  
Liang Wu ◽  
Jie Lu ◽  
Yingdong Zhang ◽  
...  

Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3471-3471
Author(s):  
Amy Johnson ◽  
Lisa Smith ◽  
Jiuxiang Zhu ◽  
Nyla Heerema ◽  
Sara Guster ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) is an incurable adult leukemia characterized by disrupted apoptosis. While the majority of patients with CLL are asymptomatic at diagnosis, most progress and require therapy. Identification of new targets and therapeutic agents is therefore a high priority for the treatment of CLL. Synthetic chemistry yielded derivatives of the COX-2 inhibitor, celecoxib, with increased ability to induce apoptosis in the 1–10 μ M range in prostate cancer cells, a similar proposed mechanism of action, and increased in vivo activity in a murine prostate cancer xenograft model. Based upon these data, a Rapid Access to Intervention Development (RAID) proposal is underway to generate OSU03012 for clinical studies in prostate cancer. In addition, we are examining the biologic effects of these new agents in primary CLL cells and lymphoblastic cell lines, showing a novel mechanism of cell killing independent of caspase activation and bcl-2 over-expression. To determine the in vitro activity against CLL cells, 11 CLL patient PBMCs were incubated in various concentrations of OSU03012. The LC50 at 24 hrs was 7.12μM and decreased to 5.45μM at 72 hrs. We show both early (annexin-V positive) and late (both annexin-V/PI positive) apoptosis concurrent with loss of mitochondrial membrane potential typical of apoptosis. These data suggest OSU03012 is highly cytotoxic toward CLL cells in vitro at doses well below those attainable without toxicity in a murine model. Additionally, we show that OSU03012 mediates apoptosis by activation of the intrinsic, mitochondrial pathway of apoptosis but also activates alternative caspase independent cell death pathways. CLL cells from 8 patients were incubated in 10μM OSU03012 for 24 hrs and assessed for caspase-3 and PARP. Immunoblots reveal a dose dependent increase in active caspase-3 concurrent with a decrease in the pro-form. This occurred concurrently with the appearance of the 85 kD cleaved product of PARP that is a known downstream target of caspase-3. In the same 8 patient lysates we saw no change in the inactive pro-form of caspase-8, but consistent processing of caspase-9. These data suggest that OSU03012 in part utilizes the intrinsic pathway of apoptosis to promote CLL cell death. Incubation of CLL cells with z-VAD-fmk and OSU03012 did not abrogate cell death, but eliminated processing of caspase-9, caspase-3 and PARP, suggesting that this agent also activates caspase independent mechanisms of cell death. Given the caspase dependent and independent pathways utilized by OSU03012, we assessed the dependence of cell death on bcl-2 expression. Here we show that bcl-2 over-expression in the 697 lymphoblastic cell line greatly diminishes the apoptosis observed with fludarabine, but potent apoptosis is equally observed with OSU03012 compared to the empty vector cell line. Furthermore, in the bcl-2 over-expressing cell line, caspase-3 and PARP cleavage was not observed despite equivalent apoptosis supporting further multiple mechanisms of cell killing induced by OSU03012. In summary, OSU03012 is an oral bioavailable therapeutic agent that has potent in vitro activity against primary CLL cells. This cytotoxicity is mediated by both caspase dependent and independent pathways and can overcome bcl-2 over-expression. These data provide support for further investigation of the mechanism of action of OSU03012 in CLL cells and performance of early Phase I studies in CLL as part of the RAID process.


2011 ◽  
Vol 44 (13) ◽  
pp. S179
Author(s):  
Arezou Rabzia ◽  
Mehri Azadbakht ◽  
Ali Bidmeshki Pour ◽  
Hasan Akrami

2008 ◽  
Vol 16 (1) ◽  
pp. 45
Author(s):  
Rong Li ◽  
Jie-Jun Wang ◽  
Yi-Jun Shen ◽  
Xin Wu ◽  
Miao-Miao Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document