Guiding principles for creating new high strength-high conductivity copper alloys

Impact ◽  
2020 ◽  
Vol 2020 (1) ◽  
pp. 71-73
Author(s):  
Satoshi Semboshi

Solid solution strengthened alloys such as brass and bronze have been widely used as contact materials for energisation in a range of devices due to the fact that they are relatively low cost. In more recent times precipitation strengthened alloys such as copper-beryllium, copper-titanium and copper-nickel-silicon are used due to their excellent strength and conductivity. Yet, little headway has been made in the development of precipitation hardening copper alloys due to the difficulty associated with departing from existing alloy designs and structure control methods. One team of researchers is exploring the use of over-aged material instead of the conventional peak-aged material. This is because previous studies have suggested that wires of this type may have improved strength and conductivity. But there remain many unknowns. Associate Professor Satoshi Semboshi is a researcher based at the Institute for Materials Research, Tohoku University, Japan, who is seeking to shed light on these unknowns.

Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2507 ◽  
Author(s):  
Bo Song ◽  
Jia She ◽  
Ning Guo ◽  
Risheng Qiu ◽  
Hucheng Pan ◽  
...  

Regulating precipitates is still an important issue in the development of high-strength Mg alloys, due to it determining the precipitation hardening effect. Cold deformation, as a simple and low-cost method, can remarkably influence the precipitate features. It is found that pre-cold deformation before aging can be utilized to enhance the precipitation hardening effect of Mg alloys. Moreover, post-deformation after aging could be an effective method to regulate precipitation orientation. In this review, recent research on the regulation of precipitation behavior by cold deformation in Mg-Al, Mg-Zn, and Mg-RE (RE: rare-earth elements) alloy systems was critically reviewed. The changes in precipitate features and mechanical properties of peak-aged Mg alloys via cold deformation were summarized. The corresponding strengthening mechanisms were also discussed. Finally, further research directions in this field were proposed.


Author(s):  
Yuehong Zheng ◽  
He Zhao ◽  
Sijia Zhu ◽  
Peiqing La ◽  
Faqi Zhan ◽  
...  

The metallic element Mo has almost no solid solubility in copper and can be used as a nucleation particle to refine the grain size and increase the recrystallization temperature of the alloy during solidification. It is expected to obtain copper alloys with good comprehensive properties by reasonably controlling the addition amount of Mo. However, it is difficult to prepare Cu–Mo alloys with uniform structure and there are few related literatures. In this paper, the aluminothermic reaction method, which has the advantages of simple process, low cost, and large size of the prepared alloy, was adopted, and a cluster model with the atomic ratio of Mo and Ni of 1:12 was introduced to design the alloy composition. Here, five alloys with different copper contents were prepared and followed by room temperature rolling with 40%, 60%, and 80% deformation. The results show that the as-cast Cu–Ni–Mo alloys exhibit good formability, have no macroscopic defects and present a small amount of precipitates. With the increase of alloy elements Ni and Mo, the hardness and strength of the alloys increase obviously, while the electrical conductivity decreases gradually. For the rolled alloys, a large number of lamellar deformed structures are formed, the grains are obviously refined, the precipitated phases are broken and the distribution is more uniform, thus the strength and hardness of the alloy increase significantly, the plasticity decrease significantly, while the conductivity changed little. In this study, high-strength samples were obtained, which may be a valuable exploration for the preparation of Cu–Ni–Mo alloy sheets with excellent microstructure and mechanical properties.


Author(s):  
Y. L. Chen ◽  
S. Fujlshiro

Metastable beta titanium alloys have been known to have numerous advantages such as cold formability, high strength, good fracture resistance, deep hardenability, and cost effectiveness. Very high strength is obtainable by precipitation of the hexagonal alpha phase in a bcc beta matrix in these alloys. Precipitation hardening in the metastable beta alloys may also result from the formation of transition phases such as omega phase. Ti-15-3 (Ti-15V- 3Cr-3Al-3Sn) has been developed recently by TIMET and USAF for low cost sheet metal applications. The purpose of the present study was to examine the aging characteristics in this alloy.The composition of the as-received material is: 14.7 V, 3.14 Cr, 3.05 Al, 2.26 Sn, and 0.145 Fe. The beta transus temperature as determined by optical metallographic method was about 770°C. Specimen coupons were prepared from a mill-annealed 1.2 mm thick sheet, and solution treated at 827°C for 2 hr in argon, then water quenched. Aging was also done in argon at temperatures ranging from 316 to 616°C for various times.


Author(s):  
D.M. Jiang ◽  
B.D. Hong

Aluminum-lithium alloys have been recently got strong interests especially in the aircraft industry. Compared to conventional high strength aluminum alloys of the 2000 or 7000 series it is anticipated that these alloys offer a 10% increase in the stiffness and a 10% decrease in density, thus making them rather competitive to new up-coming non-metallic materials like carbon fiber reinforced composites.The object of the present paper is to evaluate the inluence of various microstructural features on the monotonic and cyclic deformation and fracture behaviors of Al-Li based alloy. The material used was 8090 alloy. After solution treated and waster quenched, the alloy was underaged (190°Clh), peak-aged (190°C24h) and overaged (150°C4h+230°C16h). The alloy in different aging condition was tensile and fatigue tested, the resultant fractures were observed in SEM. The deformation behavior was studied in TEM.


Alloy Digest ◽  
1993 ◽  
Vol 42 (3) ◽  

Abstract AMPCO 940 is a precipitation-hardening copper-nickel-silicon-chromium alloy developed for resistance welding and other applications now using the 1% beryllium-copper alloys. The heat-treated alloy is capable of meeting the RWMA (Resistance Welder Manufacturers Association) Class 3 minimum requirements-95,000 psi tensile strength, 90 Rockwell B hardness and 45% IACS electrical conductivity. Potential applications include resistance welding tips, wheels and fixtures. A major use is in plastic injection molding. AMPCO-TRODE 940 is used for repair welding and overlays. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as casting, forming, heat treating, machining, and joining. Filing Code: CU-434. Producer or source: Ampco Metal Inc. Originally published as Ampcoloy 940, April 1982, revised March 1993.


Alloy Digest ◽  
1961 ◽  
Vol 10 (7) ◽  

Abstract Cunisil-837 is a copper-nickel-silicon alloy having high strength and corrosion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on forming, heat treating, machining, and joining. Filing Code: Cu-104. Producer or source: Anaconda American Brass Company.


Alloy Digest ◽  
1960 ◽  
Vol 9 (7) ◽  

Abstract SILNIC BRONZE is a copper-nickel-silicon alloy having high strength, high conductivity and good corrosion resistance. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Cu-90. Producer or source: Chase Brass & Copper Company Inc..


Alloy Digest ◽  
1966 ◽  
Vol 15 (7) ◽  

Abstract INCONEL alloy X-750 is an age-hardenable, nickel-chromium alloy used for its corrosion and oxidation resistance and high creep rupture strength at temperature up to 1500 F. It also has excellent properties at cryogenic temperatures. It was originally developed for use in gas turbines, but because of its low cost, high strength and weldability it has become the standards choice for a wide variety of applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep and fatigue. It also includes information on forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-115. Producer or source: Huntington Alloy Products Division, An INCO Company.


Alloy Digest ◽  
2006 ◽  
Vol 55 (9) ◽  

Abstract Custom 475 stainless is a premium melted, high-strength, martensitic, precipitation-hardenable stainless steel. It provides good corrosion resistance and was designed to achieve a tensile strength up to 2000 MPa (290 ksi), combined with good toughness and ductility when in the H975 condition, peak aged at 525 deg C (975 deg F). Other combinations of strength are possible by applying aging temperatures up to 595 deg C (1100 deg F). The alloy is available in strip, wire, and small diameter bar. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: SS-974. Producer or source: Carpenter Technology Corporation.


2020 ◽  
Vol 4 (1) ◽  
pp. 41-48
Author(s):  
Teodoro Astorga Amatosa ◽  
Michael E. Loretero

Bamboo is a lightweight and high-strength raw materials that encouraged researchers to investigate and explore, especially in the field of biocomposite and declared as one of the green-technology on the environment as fully accountable as eco-products. This research was to assess the technical feasibility of making single-layer experimental Medium-Density Particleboard panels from the bamboo waste of a three-year-old (Dendrocalamus asper). Waste materials were performed to produce composite materials using epoxy resin (C21H25C105) from a natural treatment by soaking with an average of pH 7.6 level of sea-water. Three different types of MDP produced, i.e., bamboo waste strip MDP (SMDP), bamboo waste chips MDP (CMDP) and bamboo waste mixed strip-chips MDP (MMDP) by following the same process. The experimental panels tested for their physical-mechanical properties according to the procedures defined by ASTM D1037-12. Conclusively, even the present study shows properties of MDP with higher and comparable to other composite materials; further research must be given better attention as potential substitute to be used as hardwood materials, especially in the production, design, and construction usage.


Sign in / Sign up

Export Citation Format

Share Document