scholarly journals CALCULATION OF THREE-LAYER LARGE DIAMETER PIPES ON THE PC «LIRA»

Author(s):  
A. I. Bulgakov ◽  
R. I. Vishtalov ◽  
H. M. Muselemov ◽  
O. M. Ustarkhanov

ObjectivesThis article discusses the evaluation of the possibility of application of three-layer pipelines. For this purpose, the stress-strain state of three-layer pipes under the action of internal pressure is investigated. The largest in the modern world are considered to be the main pipewater. They are mainly used to transport oil and gas from production sites to processing plants. Pipelines are intended for movement of liquid, gases and other environments and first of all it is water pipelines. As you know, main and technological pipelines are IP-elite club that cares only metal buildings, the construction of which consume Xia millions of tons of steel. On the other hand, one of the main indicators of efficiency of trunk pipelines is their material consumption. As a rule, trunk pipelines have a long length, and therefore an unreasonable increase in the even thickness of the pipe walls by at least 1 mm leads to an overspending of steel by de-siyatki and even hundreds of thousands of tons. In this regard, to the calculations of the main pipe wires for strength should be given the most serious attention.MethodsThe calculation is carried out by numerical methods, namely with the help of finite element meto-da (FEM), implemented in the PC "LIRA".ResultsThe calculation of the pipes is performed on the load from the transported medium applied to the inner contour of the pipe. In this case, for the three-layer pipe (the first option) and for the pipes of the second and third options, the ring tensile stresses and strains were determined. The isofields of tensile and shear stresses are given, the comparative graphical dependence of ring tensile stresses is constructed.Conclusion.The obtained numerical results showed that the selected calculation scheme (var.1), that is, the representation of the continuous section of the pipe in the form of a three-layer, is correct. The discrepancies between the data obtained are related to the rotation of the section along the radius of the pipe. In General, the results of calculations showed the possibility of using a three-layer pipe wall for transportation of various media.Acknowledgment.This work was supported by a grant from the President of the Russian Federation (MK-6112.2018.8)

Author(s):  
Soroor Karimi ◽  
Alireza Asgharpour ◽  
Elham Fallah ◽  
Siamack A. Shirazi

Abstract Large diameter pipes and elbows are vastly used in industry especially in mining and oil and gas production. Solid particle erosion is a common issue in these pipelines, and it is important to predict it to avoid failures. Currently, laboratory experiments reported in the literature are limited to diameters less than 4 inches. Therefore, there is not much experimental data available for large diameter elbows. However, the erosion can be predicted by CFD simulations and applying erosion equations in such elbows. The goal of this project is to examine the effects of elbow diameter and Stokes number on erosion patterns and magnitude for various flow conditions for elbow diameters of 2, 4, 8, and 12 inches. The approach of this work is to first perform CFD simulations of liquid-solid and gas-solid flows in 2-inch and 4-inch elbows, respectively, and evaluate the results by available experimental data. Then CFD simulations are carried for 2, 4, 8, and 12-inch standard elbows for various Stokes numbers corresponding to gas dominant flows with the velocity of 30 m/s, and liquid dominant flows with the velocities of 6 m/s. For gas dominant flows erosion in air and for liquid dominant flows erosion in water is investigated. All these simulations are carried for four particle sizes of 25, 75, 150, and 300 microns. The results indicate that Stokes number and diameter of elbows have significant effects on erosion patterns as well as magnitudes in this geometry. This work will have various applications, including validating mechanistic models of erosion predictions in elbows and developing an Artificial Intelligence (machine learning) algorithm to predict erosion for various flow conditions. Such algorithms are limited to the range of conditions they are trained for. Therefore, it is important to expand the database these codes are accessing. Overall, the CFD database of large diameter elbows will reduce the computational costs in the future.


Author(s):  
Yu. D. Morozov ◽  
M. Yu. Matrosov ◽  
B. F. Zin’ko

The pipelines are one of most important section of the fuel and energy complex of Russia. About 75% of them are presented by gas pipelines of large diameter (1020–1420 mm) for the operating pressure up to 7.4 MPa. CNIIchermet after I.P. Bardin put a big contribution into creation of pipe steels and mastering of technologies for their production at steel-works of Russia. The Institute in cooperation with leading steels-works developed an array of pipe steel, which are successfully used at construction of modern gas and oil pipelines. Tendencies of requirements increasing to characteristics of steels for large diameter pipes for pipelines considered, creation stages of grade range of steels and technology of rolled products production analyzed. Main technological requirements for achieving mechanical properties high level determined. It was shown, that K60–K65 strength class steels meet requirements to northern pipelines for a pressure up to 11.8 MPa, to thick walled underwater pipelines for a pressure of 25.0 MPa and to pipes for seismic arears. Steel-works and pipe-manufacturing plant of Russia provide the production of longitudinal-welded pipes with wall thickness up to 40–60 mm with anticorrosion external coating and smooth internal coating.


Author(s):  
Matt Bristow

A new analytical method is presented to determine the effects of cyclic loading on laterally loaded piles. The method uses a new numerical procedure to quantify the effects of the cyclic loading at each soil depth and convert that to a set of cyclic p-y modifiers. The reduced foundation stiffness associated with the cyclic loading can be determined, including the residual static capacity and an estimate of the accumulated displacement. The new method introduces the concept of cyclic degradation damage, which is defined as sum of the cyclic degradation that is occurring at each soil depth. Cyclic degradation calculations are based on the shear stresses in the soil. Consequently, anything that causes the shear stresses to change (e.g. pile length, pile diameter, applied loading, etc.) will automatically be included in the calculation of cyclic p-y modifiers. The method has been validated by comparing the cyclic p-y curves produced using the new method with established cyclic p-y curves derived from fielding testing. The new method has also been used to investigate what happens to the cyclic p-y modifiers as one moves away from the reference conditions used to determine the established cyclic p-y curves in API RP2A (2000). The new method shows that every application (e.g. combination of cyclic loading, pile properties, and soil characteristics) has its own unique set of cyclic p-y curves, though most p-y curves fit within an upper and lower bound range. Examples are provided for large diameter monopiles.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1753
Author(s):  
Patrick Wittek ◽  
Felix Ellwanger ◽  
Heike P. Karbstein ◽  
M. Azad Emin

Plant-based meat analogues that mimic the characteristic structure and texture of meat are becoming increasingly popular. They can be produced by means of high moisture extrusion (HME), in which protein-rich raw materials are subjected to thermomechanical stresses in the extruder at high water content (>40%) and then forced through a cooling die. The cooling die, or generally the die section, is known to have a large influence on the products’ anisotropic structures, which are determined by the morphology of the underlying multi-phase system. However, the morphology development in the process and its relationship with the flow characteristics are not yet well understood and, therefore, investigated in this work. The results show that the underlying multi-phase system is already present in the screw section of the extruder. The morphology development mainly takes place in the tapered transition zone and the non-cooled zone, while the cooled zone only has a minor influence. The cross-sectional contraction and the cooling generate elongational flows and tensile stresses in the die section, whereas the highest tensile stresses are generated in the transition zone and are assumed to be the main factor for structure formation. Cooling also has an influence on the velocity gradients and, therefore, the shear stresses; the highest shear stresses are generated towards the die exit. The results further show that morphology development in the die section is mainly governed by deformation and orientation, while the breakup of phases appears to play a minor role. The size of the dispersed phase, i.e., size of individual particles, is presumably determined in the screw section and then stays the same over the die length. Overall, this study reveals that morphology development and flow characteristics need to be understood and controlled for a successful product design in HME, which, in turn, could be achieved by a targeted design of the extruders die section.


2021 ◽  
Vol 30 (5) ◽  
pp. 58-65
Author(s):  
A. Yu. Shebeko ◽  
Yu. N. Shebeko ◽  
A. V. Zuban

Introduction. GOST R 12.3.047-2012 standard offers a methodology for determination of required fire resistance limits of engineering structures. This methodology is based on a comparison of values of the fire resistance limit and the equivalent fire duration. However, in practice incidents occur when, in absence of regulatory fire resistance requirements, a facility owner, who has relaxed the fire resistance requirements prescribed by GOST R 12.3.047–2012, is ready to accept its potential loss in fire for economic reasons. In this case, one can apply the probability of safe evacuation and rescue to compare distributions of fire resistance limits, on the one hand, and evacuation and rescue time, on the other hand.A methodology for the identification of required fire resistance limits. The probabilistic method for the identification of required fire resistance limits, published in work [1], was tested in this study. This method differs from the one specified in GOST R 12.3.047-2012. The method is based on a comparison of distributions of such random values, as the estimated time of evacuation or rescue in case of fire at a production facility and fire resistance limits for engineering structures.Calculations of required fire resistance limits. This article presents a case of application of the proposed method to the rescue of people using the results of full-scale experiments, involving a real pipe rack at a gas processing plant [2].Conclusions. The required fire resistance limits for pipe rack structures of a gas processing plant were identified. The calculations took account of the time needed to evacuate and rescue the personnel, as well as the pre-set reliability of structures, given that the personnel evacuation and rescue time in case of fire is identified in an experiment.


Author(s):  
Griffin Beck ◽  
Melissa Poerner ◽  
Kevin Hoopes ◽  
Sandeep Verma ◽  
Garud Sridhar ◽  
...  

Hydraulic fracturing treatments are used to produce oil and gas reserves that would otherwise not be accessible using traditional production techniques. Fracturing treatments require a significant amount of water, which has an associated environmental impact. In recent work funded by the Department of Energy (DOE), an alternative fracturing process has been investigated that uses natural gas as the primary fracturing fluid. In the investigated method, a high-pressure foam of natural gas and water is used for fracturing, a method than could reduce water usage by as much as 80% (by volume). A significant portion of the work focused on identifying and optimizing a mobile processing facility that can be used to pressurize natural gas sourced from adjacent wells or nearby gas processing plants. This paper discusses some of the evaluated processes capable of producing a high-pressure (10,000 psia) flow of natural gas from a low-pressure source (500 psia). The processes include five refrigeration cycles producing liquefied natural gas as well as a cycle that directly compresses the gas. The identified processes are compared based on their specific energy as calculated from a thermodynamic analysis. Additionally, the processes are compared based on the estimated equipment footprint and the process safety. Details of the thermodynamic analyses used to compare the cycles are provided. This paper also discusses the current state of the art of foam fracturing methods and reviews the advantages of these techniques.


Author(s):  
Mark McDougall ◽  
Ken Williamson

Oil and gas production in Canada’s west has led to the need for a significant increase in pipeline capacity to reach export markets. Current proposals from major oil and gas transportation companies include numerous large diameter pipelines across the Rocky Mountains to port locations on the coast of British Columbia (BC), Canada. The large scale of these projects and the rugged terrain they cross lead to numerous challenges not typically faced with conventional cross-country pipelines across the plains. The logistics and access challenges faced by these mountain pipeline projects require significant pre-planning and assessment, to determine the timing, cost, regulatory and environmental impacts. The logistics of pipeline construction projects mainly encompasses the transportation of pipe and pipeline materials, construction equipment and supplies, and personnel from point of manufacture or point of supply to the right-of-way (ROW) or construction area. These logistics movement revolve around the available types of access routes and seasonal constraints. Pipeline contractors and logistics companies have vast experience in moving this type of large equipment, however regulatory constraints and environmental restrictions in some locations will lead to significant pre-planning, permitting and additional time and cost for material movement. In addition, seasonal constraints limit available transportation windows. The types of access vary greatly in mountain pipeline projects. In BC, the majority of off-highway roads and bridges were originally constructed for the forestry industry, which transports logs downhill whereas the pipeline industry transports large equipment and pipeline materials in both directions and specifically hauls pipe uphill. The capacity, current state and location of these off-highway roads must be assessed very early in the process to determine viability and/or potential options for construction access. Regulatory requirements, environmental restrictions, season of use restrictions and road design must all be considered when examining the use of or upgrade of existing access roads and bridges. These same restrictions are even more critical to the construction of new access roads and bridges. The logistics and access challenges facing the construction of large diameter mountain pipelines in Western Canada can be managed with proper and timely planning. The cost of the logistics and access required for construction of these proposed pipeline projects will typically be greater than for traditional pipelines, but the key constraint is the considerable time requirement to construct the required new access and pre-position the appropriate material to meet the construction schedule. The entire project team, including design engineers, construction and logistics planners, and material suppliers must be involved in the planning stages to ensure a cohesive strategy and schedule. This paper will present the typical challenges faced in access and logistics for large diameter mountain pipelines, and a process for developing a comprehensive plan for their execution.


Sign in / Sign up

Export Citation Format

Share Document