scholarly journals Исследование влияния обработки поверхности Si-подложек на морфологию слоев GaP, полученных методом плазмохимического атомно-слоевого осаждения

Author(s):  
А.В. Уваров ◽  
В.А. Шаров ◽  
Д.А. Кудряшов ◽  
А.С. Гудовских

Investigations of atomic-layer deposition of GaP layers on Si substrates with different orientations and with different preliminary surface treatment have been carried out. The deposition of GaP was carried out by the method of plasma enhanced atomic-layer deposition using in situ treatment in argon plasma. It was shown that at the initial stage of the growth of GaP layers on precisely oriented (100) Si substrates and with misorientation, two-dimensional growth occurs both after chemical and plasma surface treatment. Upon growth on (111) substrates, after plasma treatment of the surface, a transition to three-dimensional growth is observed, at which the size of islands reaches 30–40 nm. The smallest root-mean-square roughness of the surface of the growing GaP layers (<0.1 nm) was achieved for (100) substrates with a misorientation of 4 °. The GaP layers grown on (100) substrates had a roughness of ~ 0.1 nm, and on substrates with the (111) orientation - 0.12 nm. It was found that the surface treatment of Si substrates with the (100) orientation in hydrogen plasma leads to a slight increase in the surface roughness of growing GaP layers (0.12–0.14 nm), which is associated with the effect of inhomogeneous etching of silicon in hydrogen plasma. When treating the (100) silicon surface in argon plasma, the surface roughness does not change significantly in comparison with the chemical surface treatment. On the surface of substrates with preliminary deposition of an epitaxial Si layer with a thickness of 4 nm, the morphology of GaP layers is the same as in the case of using hydrogen plasma.

2013 ◽  
Vol 734-737 ◽  
pp. 2492-2495
Author(s):  
Yong June Choi ◽  
Kyung Mun Kang ◽  
Hyung Ho Park

The post-annealing effects on the surface morphological changes of undoped and Al-doped ZnO (ZnO:Al) thin films deposited by atomic layer deposition (ALD) were investigated. The as-grown films were deposited by ALD at growth temperature of 200°C and also, post-annealing of the samples was accomplished at 300°C for 1 h under nitrogen atmosphere. The X-ray diffraction of the films was monitored to study the crystallinity of the films according to post-anneal. The field emission-scanning electron microscopy and atomic force microscopy were conducted to observe the surface morphological changes and measure the root-mean-square roughness of the films in order to analysis the post-annealing effects on the surface roughness of the films.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 117
Author(s):  
Alexander Rogozhin ◽  
Andrey Miakonkikh ◽  
Elizaveta Smirnova ◽  
Andrey Lomov ◽  
Sergey Simakin ◽  
...  

Ruthenium thin films were deposited by plasma-enhanced atomic layer deposition (PEALD) technology using Ru(EtCp)2 and oxygen plasma on the modified surface of silicon and SiO2/Si substrates. The crystal structure, chemical composition, and morphology of films were characterized by grazing incidence XRD (GXRD), secondary ion mass spectrometry (SIMS), and atomic force microscopy (AFM) techniques, respectively. It was found that the mechanism of film growth depends crucially on the substrate temperature. The GXRD and SIMS analysis show that at substrate temperature T = 375 °C, an abrupt change in surface reaction mechanisms occurs, leading to the changing in film composition from RuO2 at low temperatures to pure Ru film at higher temperatures. It was confirmed by electrical resistivity measurements for Ru-based films. Mechanical stress in the films was also analyzed, and it was suggested that this factor increases the surface roughness of growing Ru films. The lowest surface roughness ~1.5 nm was achieved with a film thickness of 29 nm using SiO2/Si-substrate for deposition at 375 °C. The measured resistivity of Ru film is 18–19 µOhm·cm (as deposited).


2001 ◽  
Vol 685 ◽  
Author(s):  
Won-Jae Lee ◽  
Chang-Ho Shin ◽  
In-Kyu You ◽  
Il-Suk Yang ◽  
Sang-Ouk Ryu ◽  
...  

AbstractThe SrTa2O6 (STO) thin films were prepared by plasma enhanced atomic layer deposition (PEALD) with alternating supply of reactant sources, Sr[Ta(C2H5O)5(C4H10NO)]2 {Strontium bis-[tantalum penta-ethoxide dimethyllaminoethoxide]; Sr(Ta(OEt)5▪dmae)2} and O2plasma. It was observed that the uniform and conformal STO thin films were successfully deposited using PEALD and the film thickness per cycle was saturated at about 0.8 nm at 300°C. Electrical properties of SrTa2O6 (STO) thin films prepared on Pt/SiO2/Si substrates with annealing temperatures have been investigated. While the grain size and dielectric constant of STO films increased with increasing annealing temperature, the leakage current characteristics of STO films slightly deteriorated. The leakage current density of a 40nm-STO film was about 5×10−8A/cm2 at 3V.


2003 ◽  
Vol 766 ◽  
Author(s):  
Degang Cheng ◽  
Eric T. Eisenbraun

AbstractA plasma-enhanced atomic layer deposition (PEALD) process for the growth of tantalumbased compounds is employed in integration studies for advanced copper metallization on a 200- mm wafer cluster tool platform. This process employs terbutylimido tris(diethylamido)tantalum (TBTDET) as precursor and hydrogen plasma as the reducing agent at a temperature of 250°C. Auger electron spectrometry, X-ray photoelectron spectrometry, and X-ray diffraction analyses indicate that the deposited films are carbide rich, and possess electrical resistivity as low as 250νΔcm, significantly lower than that of tantalum nitride deposited by conventional ALD or CVD using TBTDET and ammonia. PEALD Ta(C)N also possesses a strong resistance to oxidation, and possesses diffusion barrier properties superior to those of thermally grown TaN.


2018 ◽  
Vol 6 (24) ◽  
pp. 6471-6482 ◽  
Author(s):  
Ali Haider ◽  
Petro Deminskyi ◽  
Mehmet Yilmaz ◽  
Kholoud Elmabruk ◽  
Ibrahim Yilmaz ◽  
...  

In this work, we demonstrate vertical GaN, AlN, and InN hollow nano-cylindrical arrays (HNCs) grown on Si substrates using anodized aluminum oxide (AAO) membrane templated low-temperature plasma-assisted atomic layer deposition (PA-ALD).


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1058
Author(s):  
Katherine Hansen ◽  
Melissa Cardona ◽  
Amartya Dutta ◽  
Chen Yang

Transition metal nitrides, like titanium nitride (TiN), are promising alternative plasmonic materials. Here we demonstrate a low temperature plasma-enhanced atomic layer deposition (PE-ALD) of non-stoichiometric TiN0.71 on lattice-matched and -mismatched substrates. The TiN was found to be optically metallic for both thick (42 nm) and thin (11 nm) films on MgO and Si <100> substrates, with visible light plasmon resonances in the range of 550–650 nm. We also demonstrate that a hydrogen plasma post-deposition treatment improves the metallic quality of the ultrathin films on both substrates, increasing the ε1 slope by 1.3 times on MgO and by 2 times on Si (100), to be similar to that of thicker, more metallic films. In addition, this post-deposition was found to tune the plasmonic properties of the films, resulting in a blue-shift in the plasmon resonance of 44 nm on a silicon substrate and 59 nm on MgO.


Sign in / Sign up

Export Citation Format

Share Document