scholarly journals Plasma Enhanced Atomic Layer Deposition of Ruthenium Films Using Ru(EtCp)2 Precursor

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 117
Author(s):  
Alexander Rogozhin ◽  
Andrey Miakonkikh ◽  
Elizaveta Smirnova ◽  
Andrey Lomov ◽  
Sergey Simakin ◽  
...  

Ruthenium thin films were deposited by plasma-enhanced atomic layer deposition (PEALD) technology using Ru(EtCp)2 and oxygen plasma on the modified surface of silicon and SiO2/Si substrates. The crystal structure, chemical composition, and morphology of films were characterized by grazing incidence XRD (GXRD), secondary ion mass spectrometry (SIMS), and atomic force microscopy (AFM) techniques, respectively. It was found that the mechanism of film growth depends crucially on the substrate temperature. The GXRD and SIMS analysis show that at substrate temperature T = 375 °C, an abrupt change in surface reaction mechanisms occurs, leading to the changing in film composition from RuO2 at low temperatures to pure Ru film at higher temperatures. It was confirmed by electrical resistivity measurements for Ru-based films. Mechanical stress in the films was also analyzed, and it was suggested that this factor increases the surface roughness of growing Ru films. The lowest surface roughness ~1.5 nm was achieved with a film thickness of 29 nm using SiO2/Si-substrate for deposition at 375 °C. The measured resistivity of Ru film is 18–19 µOhm·cm (as deposited).

2007 ◽  
Vol 990 ◽  
Author(s):  
Sung-Hoon Chung ◽  
Vladislav Vasilyev ◽  
Evgeni Gorokhov ◽  
Yong-Won Song ◽  
Hyuk-Kyoo Jang

ABSTRACTWe investigated effects of thermal annealing on Ru films deposited on the 8 inch Si substrates using a volatile liquid-phase Ru precursor, tricarbonyl-1,3-cyclohexadienyl ruthenium (Ru(CO)3(C6H8)) by an atomic layer deposition (ALD) technique. Structural and electrical properties of the films were characterized by scanning probe microscopy, X-ray diffractometry, sheet resistance. Grazing incidence X-ray diffraction (GIXRD) patterns show typical Ru hexagonal polycrystalline peaks as annealing temperature was increased. At the highest annealing temperature condition, Ta = 700 °C electrical resistivity become 6 times less than in as-deposited films.


2004 ◽  
Vol 19 (2) ◽  
pp. 643-650 ◽  
Author(s):  
Hyoungsub Kim ◽  
Paul C. McIntyre ◽  
Krishna C. Saraswat

Zirconia–hafnia (ZrO2–HfO2) nanolaminate structures were grown using the atomic layer deposition (ALD) technique with different stacking sequences and layer thickness layer thicknesses. The microstructural evolution and surface roughness were compared with those of single-layer ZrO2 or HfO2 films using transmission electron microscopy and atomic force microscopy. Thin single-layer ALD-ZrO2 films were polycrystalline and composed of the tetragonal ZrO2 phase as-deposited, whereas thicker (>14 nm) films were composed mainly of the monoclinic phase. HfO2 films were amorphous as-deposited and crystallized into primarily monoclinic during subsequent anneals at temperatures over 500 °C. All the nanolaminate structures having individual layer thicknesses greater than approximately 2 nm were crystalline (mixture of tetragonal and monoclinic phases) independent of layer sequence and also exhibited a layer-to-layer epitaxy relationship within each grain. However, the identity of the starting layer determined the final grain size and surface roughness of the nanolaminates. A qualitative model for the observed microstructure evolution of the laminate films is proposed.


2006 ◽  
Vol 917 ◽  
Author(s):  
Rong Chen ◽  
David W. Porter ◽  
Hyoungsub Kim ◽  
Paul C. McIntyre ◽  
Stacey F. Bent

AbstractArea selective HfO2 thin film growth through atomic layer deposition (ALD) has been achieved on octadecyltrichlorosilane (ODTS) patterned Si substrates. Patterned hydrophobic self-assembled monolayers (SAMs) were first transferred to Si substrates by micro-contact printing. Using hafnium-tetrachloride or tetrakis(dimethylamido) hafnium(IV) and water as ALD precursors, amorphous HfO2 layers were then grown selectively on the SAM-free regions of the surface where native hydroxyl groups nucleate growth from the vapor phase. The HfO2 pattern was readily observed through scanning electron microscopy and scanning Auger imaging, demonstrating that soft lithography is a simple and promising method to achieve area selective ALD. To evaluate the selectivity, the resolution of the soft lithography based method was compared with that of area selective ALD of HfO2 by selective surface modification of patterned silicon oxide obtained using long-time SAM exposure. It was found that the selective surface modification showed much higher spatial resolution and selectivity, an observation consistent with previous studies indicating that highly ordered and densely packed ODTS films were important to achieve complete deactivation.


Author(s):  
А.В. Уваров ◽  
В.А. Шаров ◽  
Д.А. Кудряшов ◽  
А.С. Гудовских

Investigations of atomic-layer deposition of GaP layers on Si substrates with different orientations and with different preliminary surface treatment have been carried out. The deposition of GaP was carried out by the method of plasma enhanced atomic-layer deposition using in situ treatment in argon plasma. It was shown that at the initial stage of the growth of GaP layers on precisely oriented (100) Si substrates and with misorientation, two-dimensional growth occurs both after chemical and plasma surface treatment. Upon growth on (111) substrates, after plasma treatment of the surface, a transition to three-dimensional growth is observed, at which the size of islands reaches 30–40 nm. The smallest root-mean-square roughness of the surface of the growing GaP layers (<0.1 nm) was achieved for (100) substrates with a misorientation of 4 °. The GaP layers grown on (100) substrates had a roughness of ~ 0.1 nm, and on substrates with the (111) orientation - 0.12 nm. It was found that the surface treatment of Si substrates with the (100) orientation in hydrogen plasma leads to a slight increase in the surface roughness of growing GaP layers (0.12–0.14 nm), which is associated with the effect of inhomogeneous etching of silicon in hydrogen plasma. When treating the (100) silicon surface in argon plasma, the surface roughness does not change significantly in comparison with the chemical surface treatment. On the surface of substrates with preliminary deposition of an epitaxial Si layer with a thickness of 4 nm, the morphology of GaP layers is the same as in the case of using hydrogen plasma.


Coatings ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 954
Author(s):  
Rashid Dallaev ◽  
Dinara Sobola ◽  
Pavel Tofel ◽  
Ľubomir Škvarenina ◽  
Petr Sedlák

The aim of this study is motivated by the pursuit to investigate the performance of new and as yet untested precursors such as hydrazinium chloride (N2H5Cl) and triisobutylaluminum Al(C4H9)3 in the AlN atomic layer deposition (ALD) process as well as to study effects of successive annealing on the quality of the resulting layer. Both precursors are significantly cheaper than their conventional counterparts while also being widely available and can boast easy handling. Furthermore, Al(C4H9)3 being a rather large molecule might promote steric hindrance and prevent formation of undesired hydrogen bonds. Chemical analysis is provided by X-ray photoelectron spectroscopy (XPS) and secondary-ion mass spectrometry (SIMS) techniques; surface morphology was studied using atomic force microscopy (AFM). Chlorine containing precursors such as AlCl3 are usually avoided in ALD process due to the risk of chamber contamination. However, experimental data of this study demonstrated that the use of N2H5Cl does not result in chlorine contamination due to the fact that temperature needed for HCl molecules to become reactive cannot be reached within the AlN ALD window (200–350 °C). No amount of chlorine was detected even by the most sensitive techniques such as SIMS, meaning it is fully removed out of the chamber during purge stages. A part of the obtained samples was subjected to annealing (1350 °C) to study effects of high-temperature processing in nitrogen atmosphere, the comparisons with unprocessed samples are provided.


2018 ◽  
Author(s):  
Kyle J. Blakeney ◽  
Philip D. Martin ◽  
Charles H. Winter

<p>Aluminum dihydride complexes containing amido-amine ligands were synthesized and evaluated as potential reducing precursors for thermal atomic layer deposition (ALD). Highly volatile monomeric complexes AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>) and AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NC<sub>4</sub>H<sub>8</sub>) are more thermally stable than common Al hydride thin film precursors such as AlH<sub>3</sub>(NMe<sub>3</sub>). ALD film growth experiments using TiCl<sub>4</sub> and AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>) produced titanium carbonitride films with a high growth rate of 1.6-2.0 Å/cycle and resistivities around 600 μΩ·cm within a very wide ALD window of 220-400 °C. Importantly, film growth proceeded via self-limited surface reactions, which is the hallmark of an ALD process. Root mean square surface roughness was only 1.3 % of the film thickness at 300 °C by atomic force microscopy. The films were polycrystalline with low intensity, broad reflections corresponding to the cubic TiN/TiC phase according to grazing incidence X-ray diffraction. Film composition by X-ray photoelectron spectroscopy was approximately TiC<sub>0.8</sub>N<sub>0.5</sub> at 300 °C with small amounts of Al (6 at%), Cl (4 at%) and O (4 at%) impurities. Remarkably, self-limited growth and low Al content was observed in films deposited well above the solid-state thermal decomposition point of AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>), which is ca. 185 °C. Similar growth rates, resistivities, and film compositions were observed in ALD film growth trials using AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NC<sub>4</sub>H<sub>8</sub>). </p>


2018 ◽  
Author(s):  
Kyle J. Blakeney ◽  
Philip D. Martin ◽  
Charles H. Winter

<p>Aluminum dihydride complexes containing amido-amine ligands were synthesized and evaluated as potential reducing precursors for thermal atomic layer deposition (ALD). Highly volatile monomeric complexes AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>) and AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NC<sub>4</sub>H<sub>8</sub>) are more thermally stable than common Al hydride thin film precursors such as AlH<sub>3</sub>(NMe<sub>3</sub>). ALD film growth experiments using TiCl<sub>4</sub> and AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>) produced titanium carbonitride films with a high growth rate of 1.6-2.0 Å/cycle and resistivities around 600 μΩ·cm within a very wide ALD window of 220-400 °C. Importantly, film growth proceeded via self-limited surface reactions, which is the hallmark of an ALD process. Root mean square surface roughness was only 1.3 % of the film thickness at 300 °C by atomic force microscopy. The films were polycrystalline with low intensity, broad reflections corresponding to the cubic TiN/TiC phase according to grazing incidence X-ray diffraction. Film composition by X-ray photoelectron spectroscopy was approximately TiC<sub>0.8</sub>N<sub>0.5</sub> at 300 °C with small amounts of Al (6 at%), Cl (4 at%) and O (4 at%) impurities. Remarkably, self-limited growth and low Al content was observed in films deposited well above the solid-state thermal decomposition point of AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NMe<sub>2</sub>), which is ca. 185 °C. Similar growth rates, resistivities, and film compositions were observed in ALD film growth trials using AlH<sub>2</sub>(tBuNCH<sub>2</sub>CH<sub>2</sub>NC<sub>4</sub>H<sub>8</sub>). </p>


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 978
Author(s):  
Ming-Jie Zhao ◽  
Zhi-Xuan Zhang ◽  
Chia-Hsun Hsu ◽  
Xiao-Ying Zhang ◽  
Wan-Yu Wu ◽  
...  

Indium oxide (In2O3) film has excellent optical and electrical properties, which makes it useful for a multitude of applications. The preparation of In2O3 film via atomic layer deposition (ALD) method remains an issue as most of the available In-precursors are inactive and thermally unstable. In this work, In2O3 film was prepared by ALD using a remote O2 plasma as oxidant, which provides highly reactive oxygen radicals, and hence significantly enhancing the film growth. The substrate temperature that determines the adsorption state on the substrate and reaction energy of the precursor was investigated. At low substrate temperature (100–150 °C), the ratio of chemically adsorbed precursors is low, leading to a low growth rate and amorphous structure of the films. An amorphous-to-crystalline transition was observed at 150–200 °C. An ALD window with self-limiting reaction and a reasonable film growth rate was observed in the intermediate temperature range of 225–275 °C. At high substrate temperature (300–350 °C), the film growth rate further increases due to the decomposition of the precursors. The resulting film exhibits a rough surface which consists of coarse grains and obvious grain boundaries. The growth mode and properties of the In2O3 films prepared by plasma-enhanced ALD can be efficiently tuned by varying the substrate temperature.


Author(s):  
Yoon Kyeung Lee ◽  
Chanyoung Yoo ◽  
Woohyun Kim ◽  
Jeongwoo Jeon ◽  
Cheol Seong Hwang

Atomic layer deposition (ALD) is a thin film growth technique that uses self-limiting, sequential reactions localized at the growing film surface. It guarantees exceptional conformality on high-aspect-ratio structures and controllability...


Sign in / Sign up

Export Citation Format

Share Document