scholarly journals Фотонные кристаллы на основе сред с произвольной анизотропией диэлектрической и магнитной проницаемостей

2019 ◽  
Vol 89 (3) ◽  
pp. 329
Author(s):  
Г.Ф. Глинский

AbstractA general approach to analyzing eigenmodes in anisotropic and gyrotropic 3D photonic crystals based on dielectric and magnetic media is proposed. This approach is based on the representation of stationary macroscopic Maxwell equations in the operator form corresponding to the quantum-mechanical equation for a photon with spin s = 1. In these equations, the strengths of electric and magnetic fields are put into correspondence with state vectors in the complex Hilbert space. The permittivity and permeability serve as operators acting on these vectors. It is shown that the problem of determining the eigenmodes of a photonic crystal is reduced to searching for eigenvectors and eigenvalues of the Hermitian operator characterizing the spin–orbit interaction of a photon in the periodic anisotropic medium under study. It is proposed to use photon states with a certain wave vector (certain momentum) and a certain linear or circular spin polarization as a basis for the representation operator equations. One-dimensional photonic crystals are considered as an example. The influence of anisotropy and gyrotropy on the dispersion of eigenmodes in these crystals is investigated. The group velocity of the eigenmodes, momentum transferred by them, and spin angular momentum are analyzed for the case of gyrotropic media.

1997 ◽  
Vol 12 (40) ◽  
pp. 3153-3159 ◽  
Author(s):  
Rainer W. Kühne

The possibility of the existence of magnetic charges is one of the greatest unsolved issues of the physics of this century. The concept of magnetic monopoles has at least two attractive features: (i) Electric and magnetic fields can be described equivalently. (ii) In contrast to quantum electrodynamics, models of monopoles are able to explain the quantization of electric charge. We suggest a quantum field theoretical model of the electromagnetic interaction that describes electricity and magnetism as equivalent as possible. This model requires the cross-section of Salam's "magnetic photon" to depend on the absolute motion of the electric charge with which it interacts. We suggest a tabletop experiment to verify this magnetic photon. Its discovery by the predicted effect would have far-reaching consequences: (i) Evidence for a new gauge boson and a new kind of radiation which may find applications in medicine. (ii) Evidence for symmetrized Maxwell equations. (iii) Evidence for an absolute rest frame that gives rise to local physical effects and violation of Einstein's relativity principle.


2006 ◽  
Vol 21 (02) ◽  
pp. 151-158
Author(s):  
E. M. C. ABREU ◽  
C. PINHEIRO ◽  
S. A. DINIZ ◽  
F. C. KHANNA

In this letter we introduce a particular solution for parallel electric and magnetic fields, in a gravitational background, which satisfy free-wave equations and the phenomenology suggested by astrophysical plasma physics. These free-wave equations are computed such that the electric field does not induce the magnetic field and vice versa. In a gravitational field, we analyze the Maxwell equations and the corresponding electromagnetic waves. A continuity equation is presented. A commutative and noncommutative analysis of the electromagnetic duality is described.


2020 ◽  
Vol 33 (4) ◽  
pp. 605-616
Author(s):  
Dino Lovric ◽  
Slavko Vujevic ◽  
Ivan Krolo

In this manuscript, a novel method for computation of per-unit-length internal impedance of a cylindrical multilayer conductor with conductive and dielectric layers is presented in detail. In addition to this, formulas for computation of electric and magnetic field distribution throughout the entire multilayer conductor (including dielectric layers) have been derived. The presented formulas for electric and magnetic field in conductive layers have been directly derived from Maxwell equations using modified Bessel functions. However, electric and magnetic field in dielectric layers has been computed indirectly from the electric and magnetic fields in contiguous conductive layers which reduces the total number of unknowns in the system of equations. Displacement currents have been disregarded in both conductive and dielectric layers. This is justifiable if the conductive layers are good conductors. The validity of introducing these approximations is tested in the paper versus a model that takes into account displacement currents in all types of layers.


2015 ◽  
Vol 12 (12) ◽  
pp. 1-4
Author(s):  
P R Dhungel ◽  
S K Sharma ◽  
U Khanal

Some solutions of the Maxwell equations with Dirac particles for the source in FRW spacetime are discussed. The Green’s function of the equation for the radial component of the Maxwell fields, Fr? and F?? is solved. Green’s function is found to reduce to that of Minkowskian spacetime in the appropriate limit. Also, the Lienard-Wiechert type solution is derived. Also, the solutions with the Dirac particle current is also presented. It is found that the Fr? is composed of even angular momentum states while the odd states constitute F??.Scientific World, Vol. 12, No. 12, September 2014, page 1-4


2020 ◽  
Vol 35 (32) ◽  
pp. 2050267
Author(s):  
Alexander J. Silenko

The paradox of a field of a moving locked charge (confined in a closed space) is considered and solved with the use of the integral Maxwell equations. While known formulas obtained for instantaneous fields of charges moving along straight and curved lines are fully correct, measurable quantities are average electric and magnetic fields of locked charges. It is shown that the average electric field of locked charges does not depend on their motion. The average electric field of protons moving in nuclei coincides with that of protons being at rest and having the same spatial distribution of the charge density. The electric field of a twisted electron is equivalent to the field of a centroid with immobile charges whose spatial distribution is defined by the wave function of the twisted electron.


Author(s):  
Victor Christianto

In a recent paper published at Advances in High Energy Physics (AHEP) journal, Yang Zhao et al. derived Maxwell equations on Cantor sets from the local fractional vector calculus. It can be shown that Maxwell equations on Cantor sets in a fractal bounded domain give efficiency and accuracy for describing the fractal electric and magnetic fields. However, so far there is no derivation of equations for electrodynamics of superconductor on Cantor sets. Therefore, in this paper I present for the first time a derivation of London-Proca-Hirsch equations on Cantor sets. The name of London-Proca-Hirsch is proposed because the equations were based on modifying Proca and London-Hirsch’s theory of electrodynamics of superconductor. Considering that Proca equations may be used to explain electromagnetic effects in superconductor, I suggest that the proposed London-Proca-Hirsch equations on Cantor sets can describe electromagnetic of fractal superconductors. It is hoped that this paper may stimulate further investigations and experiments in particular for fractal superconductor. It may be expected to have some impact to fractal cosmology modeling too.


2019 ◽  
Vol 5 (1) ◽  
Author(s):  
D. Szaller ◽  
A. Shuvaev ◽  
A. A. Mukhin ◽  
A. M. Kuzmenko ◽  
A. Pimenov

Abstract Magnetoelectric coupling in multiferroic materials opens new routes to control the propagation of light. The new effects arise due to dynamic magnetoelectric susceptibility that cross-couples the electric and magnetic fields of light and modifies the solutions of Maxwell equations in media. In this paper, two major effects will be considered in detail: optical activity and asymmetric propagation. In case of optical activity the polarization plane of the input radiation rotates by an angle proportional to the magnetoelectric susceptibility. The asymmetric propagation is a counter-intuitive phenomenon and it represents different transmission coefficients for forward and backward directions. Both effects are especially strong close to resonance frequencies of electromagnons, i. e. excitations in multiferroic materials that reveal simultaneous electric and magnetic character.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1475 ◽  
Author(s):  
J. Flores Méndez ◽  
A. C. Piñón Reyes ◽  
M. Moreno Moreno ◽  
A. Morales-Sánchez ◽  
Gustavo M. Minquiz ◽  
...  

A homogenization theory that can go beyond the regime of long wavelengths is proposed, namely, a theory that is still valid for vectors of waves near the edge of the first zone of Brillouin. In this paper, we consider that the displacement vector and the magnetic induction fields have averages in the volume of the cell associated with the values of the electric and magnetic fields in the edges of the cell, so they satisfy Maxwell’s equations. Applying Fourier formalism, explicit expressions were obtained for the case of a photonic crystal with arbitrary periodicity. In the case of one-dimensional (1D) photonic crystals, the expressions for the tensor of the effective bianisotropic response (effective permittivity, permeability and crossed magneto-electric tensors) are remarkably simplified. Specifically, the effective permittivity and permeability tensors are calculated for the case of 1D photonic crystals with isotropic and anisotropic magnetic inclusions. Through a numerical calculation, the dependence of these effective tensors upon the filling fraction of the magnetic inclusion is shown and analyzed. Our results show good correspondence with the approach solution of Rytov’s effective medium. The derived formulas can be very useful for the design of anisotropic systems with specific optical properties that exhibit metamaterial behavior.


Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1427 ◽  
Author(s):  
Ivan Fernandez-Corbaton

The average helicity of a given electromagnetic field measures the difference between the number of left- and right-handed photons contained in the field. Here, the average helicity is derived using the conformally invariant inner product for Maxwell fields. Several equivalent integral expressions in momentum space, in ( r , t ) space, and in the time-harmonic ( r , ω ) space are obtained, featuring Riemann–Silberstein-like fields and potentials. The time-harmonic expressions can be directly evaluated using the outputs of common numerical solvers of Maxwell equations. The results are shown to be equivalent to the well-known volume integral for the average helicity, featuring the electric and magnetic fields and potentials.


Sign in / Sign up

Export Citation Format

Share Document