scholarly journals Обнаружение высокочастотных альфвеновских колебаний в омических разрядах сферического токамака Глобус-М2

Author(s):  
И.М. Балаченков ◽  
Ю.В. Петров ◽  
В.К. Гусев ◽  
Н.Н. Бахарев ◽  
В.И. Варфоломеев ◽  
...  

In Globus-M2 ohmic discharges with low density, by means of Mirnov coils array, magnetic field oscillations with frequencies in 1 MHz range were detected. Frequency range of these oscillations significantly exceed the range of TAE and RSAE frequencies, which were previously observed on Globus-M and Globus-M2 tokamaks, and their amplitude, contrary, turned out to be up to an order of magnitude lower. It was found that high frequency oscillations are interrelated with suprathermal electron fraction. At the same time the observed instability seems to have Alfvenic nature, since its frequency correlates well with Alfven frequency scaling. It was also found that magnetic perturbation always forms standing wave with predominantly low toroidal wavenumbers, including n = 0 structure, which makes gap (e.g. TAE) mode excitation impossible. Frequency chirping during single bursts with δω ~ √t is consistent with hole-clump model predictions.

2009 ◽  
Vol 152-153 ◽  
pp. 373-376 ◽  
Author(s):  
Stanislav O. Volchkov ◽  
Andrey V. Svalov ◽  
G.V. Kurlyandskaya

In this work magnetoimpedance (MI) behaviour was studied experimentally for Fe19Ni81(175 nm)/Cu(350 nm)/Fe19Ni81(175 nm) sensitive elements deposited by rf-sputtering. A constant magnetic field was applied in plane of the sandwiches during deposition perpendicular to the Cu-lead in order to induce a magnetic anisotropy. Sandwiches with different width (w) of FeNi parts were obtained. The complex impedance was measured as a function of the external magnetic field for a frequency range of 1 MHz to 700 MHz for MI elements with different geometries. Some of MI experimental data are comparatively analysed with finite elements numerical calculations data. The obtained results can be useful for optimization of the design of miniaturized MI detectors.


2004 ◽  
Vol 190 ◽  
pp. 307-313
Author(s):  
L. A. Venter ◽  
P. J. Meintjies

AbstractIn this paper we model the non-thermal radio to infra-red flares from AE Aqr. In our model the non-thermal flares originate in highly magnetized (Bblob ≥ 2000 G) blobs that may be among the propeller ejected outflow. It was shown that the condition ß ≤ 1 constrains the frozen-in magnetic field in these blobs to Bblob ≥ 2000 G, which is of the same order of magnitude as the inferred polar field of the secondary. As these magnetized blobs encounter the violent mhd-propeller, processes such as reconnection, magnetic pumping, and shocks will result in continuous acceleration of electrons from (γ = 2 → 30; δ = 2.8 → 2.6) with resultant synchrotron emission. The total radio to infra-red flare spectrum was modelled in terms of such expanding magnetized synchrotron emitting blobs in various stages of their evolution from ρ = (r/r°) = 1 → 400. In terms of our model, the total integrated flux during outbursts, over the wide frequency range from 1 GHz is the result of several (~ 20) synchrotron emitting blobs observed in different stages of their evolution, resulting in a spectrum showing a peak flux of Sv ~ 148 mJy at v ~ 1805 GHz (~ 166 microns), where the spectrum changes from a typical self-absorbed Sv ∝ vα spectrum to Sv ∝ v-(δ-1)/2 spectrum, i.e. where the blobs are combined optically thin.


1994 ◽  
Vol 72 (3) ◽  
pp. 1304-1316 ◽  
Author(s):  
C. N. Christakos ◽  
M. I. Cohen ◽  
A. L. Sica ◽  
W. X. Huang ◽  
W. R. See ◽  
...  

1. Inspiratory (I) activities of recurrent laryngeal (RL) motoneurons and efferent nerves were studied by autospectral, interval, and coherence analyses, with emphasis on fast rhythms of two types: medium-frequency oscillations (MFO, usual range 20-50 Hz for nerve autospectral peaks) and high-frequency oscillations (HFO, usual range 50-100 Hz). 2. In decerebrate, paralyzed, and artificially ventilated cats, recordings were taken from 27 isolated single RL fibers (14 cats) and 8 identified RL motoneurons in the medulla (6 cats), together with recordings of phrenic (PHR) and RL whole-nerve activities. In another 50 cats, RL and PHR nerve discharges were recorded simultaneously. 3. The autospectra of RL units showed prominent MFO peaks with frequencies close to that of the RL nerve MFO spectral peak, indicating presence of this type of fast rhythm in the units' discharges. Spectral analysis of RL unit activity in different segments of the I phase showed that the frequency of a unit's MFO was very close to the peak (maintained) firing rate of the unit during the portion of I analyzed. Thus a motoneuron's MFO spectral peak reflected its rhythmic discharge arising from the cell's refractoriness (and possibly with the rate changing in the course of I). 4. The coherences of motoneurons' MFOs to nerve MFOs were very low or 0, indicating that correlations between unitary MFOs of the RL population were rare and/or weak. 5. In those cats (19/20) that had discernible PHR nerve HFO autospectral peaks, about half of the recorded RL motoneurons (16/34) had HFO. For these motoneurons, the unit-nerve HFO coherences were substantial, indicating widespread correlations between unitary HFOs. 6. In a fraction of cats, coherence peaks in the MFO frequency range were observed between bilateral RL nerves, and between RL and PHR nerves, at frequencies that were subharmonics of the HFO frequency. 7. In light of theoretical considerations on the generation of aggregate rhythms from superposition of unitary rhythms, these observations indicate that, similarly, to the case of PHR motoneurons and nerves. 1) RL nerve MFO arises from superposition of uncorrelated, or at most partially correlated, MFOs of RL units, representing the rhythmic discharges of the cells. It is manifested therefore as a spectral deflection with a maximum in the band of peak firing rates of the units. 2) RL nerve HFO arises from correlated, common-frequency HFOs in a subpopulation of RL units, caused by HFO inputs from antecedent medullary I neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


Author(s):  
Xiao Ping Li ◽  
Z.J. Zhao ◽  
T.B. Oh ◽  
H.L. Seet

In order to develop high sensitivity micro sensors for bio-magnetic field using NiFe electroplated composite sensing elements, it is important to study how different plating processes can affect the magnetic properties in terms of the chemical composition and magnetic structure of the plated layer. In this study, to study the effect of the magnetic field on the magnetic structure of the electroplated NiFe layers, magnetic controlled plating in which a longitudinal magnetic field ranging from 0 to 400 Oe is applied during nanocrystalline electroplating of permalloy Ni80Fe20 layer of 2 µm thick onto a 20 µm diameter Cu wire. The magnetic structure of the plated layers is studied by investigating the Giant magneto-impedance (GMI) effect of the plated layer. GMI has been measured from a frequency range of 100 kHz to 50 MHz. It is observed that under conventional electroplating without an external magnetic controlling field, the anisotropy of the plated layer is generally circumferential as indicted by the double peaks of the MI curves in testing at high frequency. When a longitudinal magnetic field is applied during electroplating, the plated layer shows single peak MI curves, suggesting that the anisotropy is changed from circumferential to longitudinal. The results also show that the sensitivity and resolution of a magnetic field sensor is improved greatly by changing the anisotropy of the plated layer from circumferential to longitudinal.


2019 ◽  
pp. 24-26
Author(s):  
N.A. Azarenkov ◽  
D.V. Chibisov

The problem of the presence of high-frequency oscillations in lower hybrid cavities in the plasma of the earth's ionosphere is considered. It is assumed that the oscillations in the cavity are excited due to the ring ion current across the magnetic field, in addition to the mechanism of the Hall current arising from the radial inhomogeneity of the plasma density. The radial dependence of the density of the ring ion beam is also taken into account.


2012 ◽  
Vol 466-467 ◽  
pp. 567-571
Author(s):  
Xiao Guang Yang

A high frequency coaxial transformer (HFCT) with a split winding structure and litz wire has been developed for high frequency (HF) and high power DC/DC converter applications. A method combined numerical analysis of magnetic field and analytical calculation of litz wire winding losses, taking into account conduction losses and proximity effect losses, is proposed for the designed HFCT. The experimental results validate the winding loss calculation method. The measured results demonstrate that the voltage ratio has a good agreement with the turn ratio over the frequency range from 0.1MHz to 1MHz, indicating that the high coupling efficiency has been obtained.


Author(s):  
Ardi Wiranata ◽  
Makoto Kanno ◽  
Naoki Chiya ◽  
Hozuma Okabe ◽  
Tatsuhiro Horii ◽  
...  

Abstract To increase safety and reduce the electric circuit cost, Dielectric elastomer actuators (DEAs) must operate below the kV range. The simplest strategy to reduce the voltage operation is to decrease the dielectric elastomer membrane thickness. This research aims to demonstrate DEAs with a nanometric uniform thickness that can operate at a low voltage (below 70 V) and a high frequency. We use the roll-to-roll process to fabricate a 600-nm-thick stretchable PDMS (polydimethylsiloxane) nanosheet and a 200-nm-thick conductive nanosheet. These nanosheet-DEAs are tested in high-frequency operations of DC voltage below 70 V and in a frequency range of 1–30 kHz.


1902 ◽  
Vol 70 (459-466) ◽  
pp. 341-344 ◽  

The present note bears upon the special manner in which a core or rod of iron or steel placed in a varying magnetic field is affected by high-frequency oscillations transmitted from considerable distances. The magnetisation and demagnetisation of steel needles by the effect of electrical oscillations has long been known, and has been noted especially by Professor J. Henry, Abria, Lord Rayleigh, and others. Mr. E. Rutherford also has described a magnetic detector of electric waves, based on the partial demagnetisation of a small core composed of fine steel needles, previously magnetised to saturation, and placed in a solenoid of fine copper wire connected to exposed plates.


Sign in / Sign up

Export Citation Format

Share Document