Impact of different Tillage practices on Soil Organic Carbon and Nitrogen Pool in Rice-Wheat Cropping System

2016 ◽  
Vol 3 (2) ◽  
Author(s):  
Aradhna Kumari ◽  
Santosh Kumar Singh

Conventional agriculture can result in loss of organic matter (OM), resulting in degradation of cultivated soil. A study was conducted to assess the impact of different tillage treatments in rice and wheat cropping system on soil organic carbon and nitrogen pool. The experiment was carried out in split plot design with four main plot treatments viz. P (direct dry seeding by zero till drill), P 1 2 (direct seeding of sprouted rice in puddle condition), P (hand transplanting) and P (transplanting 3 4 by self-propelled rice trans planter) while the sub plot treatment (for wheat) included T 1 (conventional sowing), T (bed planting), T (strip till drilling) and T (zero till drilling). Significant 2 3 4 variations in SOC and soil nitrogen pool were observed in wheat tillage treatments for D (0-10cm) 1 soil depth. The T and T treatments had significantly higher values of SOC pool as compared to T . 4 3 1 Similar trend was also observed for soil nitrogen. Rice tillage treatments did not have any significant impact on SOC and soil nitrogen at D or subsequent depths. The summarized depths 0- 1 30 and 0-60 cm did not show any impact of the tillage treatments on SOC or soil nitrogen pools.In rice tillage treatments, SOC pool ranged from 26.06 Mg/m3 (P ) to 27.61 Mg/m3 (P ) while the range 4 1 for wheat tillage treatment was 26.30 Mg/m3 (T ) to 26.75 Mg/m3 (T ). At D depth soil N pool was 4 1 1 found to be statistically higher for T and T tillage treatments in wheat, whereas T tillage treatment 3 4 2 was found to be statistically at par with T . This is because of the presence of higher amount of SOM 1 in T and T . A high and positive correlation between SOC and total N was observed because most of 3 4 the nitrogen present in soil is in organic form.

Soil Research ◽  
2021 ◽  
Vol 59 (1) ◽  
pp. 24
Author(s):  
Yui Osanai ◽  
Oliver Knox ◽  
Gunasekhar Nachimuthu ◽  
Brian Wilson

Agricultural practices (e.g. tillage, crop rotation and fertiliser application) have a strong influence on the balance between carbon (C) input and output by altering physicochemical and microbial properties that control decomposition processes in the soil. Recent studies suggest that the mechanisms by which agricultural practice impacts soil organic carbon (SOC) dynamics in the topsoil may not be the same as those in the subsoil. Here, we assessed SOC stock, soil organic fractions and nitrogen availability to 1.0 m in soils under a cotton (Gossypium hirsutum L.)-based cropping system, and assessed the impact of agricultural management (three historical cropping systems with or without maize (Zea mays L.) rotation) on SOC storage. We found that the maize rotation and changes in the particulate organic fraction influenced SOC stock in the topsoil, although the overall change in SOC stock was small. The large increase in subsoil SOC stock (by 31%) was dominated by changes in the mineral-associated organic fraction, which were influenced by historical cropping systems and recent maize rotation directly and indirectly via changes in soil nitrogen availability. The strong direct effect of maize rotation on SOC stock, particularly in the subsoil, suggests that the direct transfer of C into the subsoil SOC pool may dominate C dynamics in this cropping system. Therefore, agricultural management that affects the movement of C within the soil profile (e.g. changes in soil physical properties) could have a significant consequence for subsoil C storage.


2020 ◽  
Author(s):  
Andrew Tye ◽  
Daniel Evans

<p>The redistribution of soil by humans has been demonstrated to rival that of geologic events. Moreover, the impact of some conventional, agricultural techniques has been shown to redistribute a significant proportion of soil organic carbon. On the more erosive areas of hillslopes, the resulting thinning of soil could make deep soil carbon more accessible and, ultimately, more susceptible to destabilisation. However, downslope colluviation can thicken soil profiles such that subsoil carbon pools become inaccessible to microbial decomposition. The fate of soil thinning and thickening on soil organic carbon has not been studied in the UK until now. In this work, we studied the distribution of organic and inorganic carbon down profiles surveyed at three landscape positions (midslope, backslope, and toeslope) on Mountfield Farm, in Somerset, UK. In this poster, we present the results of thermogravimetric analysis and laser-induced fluorescence spectroscopy, both of which we used to investigate the stability of soil organic carbon down each profile. We explore the relationships between soil depth and the stocks and stability of soil organic carbon fractions at each position, and suggest the implications of continued upslope soil thinning and downslope soil thickening. </p>


2020 ◽  
Author(s):  
Dedy Antony ◽  
Jo Clark ◽  
Chris Collins ◽  
Tom Sizmur

<p>Soils are the largest terrestrial pool of organic carbon and it is now known that as much as 50% of soil organic carbon (SOC) can be stored below 30 cm. Therefore, knowledge of the mechanisms by which soil organic carbon is stabilised at depth and how land use affects this is important.</p><p>This study aimed to characterise topsoil and subsoil SOC and other soil properties under different land uses to determine the SOC stabilisation mechanisms and the degree to which SOC is vulnerable to decomposition. Samples were collected under three different land uses: arable, grassland and deciduous woodland on a silty-clay loam soil and analysed for TOC, pH, C/N ratio and texture down the first one metre of the soil profile. Soil organic matter (SOM) physical fractionation and the extent of fresh mineral surfaces were also analysed to elucidate SOM stabilisation processes.</p><p>Results showed that soil texture was similar among land uses and tended to become more fine down the soil profile, but pH did not significantly change with soil depth. Total C, total N and C/N ratio decreased down the soil profile and were affected by land use in the order woodland > grassland > arable. SOM fractionation revealed that the free particulate organic matter (fPOM) fraction was significantly greater in both the topsoil and subsoil under woodland than under grassland or arable. The mineral associated OC (MinOC) fraction was proportionally greater in the subsoil compared to topsoil under all land uses: arable > grassland > woodland. Clay, Fe and Mn availability play a significant role (R<sup>2</sup>=0.87) in organic carbon storage in the top 1 m of the soil profile.</p><p>It is evidently clear from the findings that land use change has a significant effect on the dynamics of the SOC pool at depth, related to litter inputs to the system.</p>


2021 ◽  
Vol 13 (14) ◽  
pp. 7901
Author(s):  
Jifeng Du ◽  
Mengxiao Yu ◽  
Junhua Yan

Empirical evidence shows that the expansion of impervious surface threatens soil organic carbon (SOC) sequestration in urbanized areas. However, the understanding of deep soil excavation due to the vertical expansion of impervious surface remains limited. According to the average soil excavation depth, we divided impervious surface into pavement (IS20), low-rise building (IS100) and high-rise building (IS300). Based on remote-sensing images and published SOC density data, we estimated the SOC storage and its response to the impervious surface expansion in the 0–300 cm soil depth in Guangzhou city, China. The results showed that the total SOC storage of the study area was 8.31 Tg, of which the top 100 cm layer contributed 44%. The impervious surface expansion to date (539.87 km2) resulted in 4.16 Tg SOC loss, of which the IS20, IS100 and IS300 contributed 26%, 58% and 16%, respectively. The excavation-induced SOC loss (kg/m2) of IS300 was 1.8 times that of IS100. However, at the residential scale, renovating an IS100 plot into an IS300 plot can substantially reduce SOC loss compared with farmland urbanization. The gains of organic carbon accumulation in more greenspace coverage may be offset by the loss in deep soil excavation for the construction of underground parking lots, suggesting a need to control the exploitation intensity of underground space and promote residential greening.


Author(s):  
R. K. Naresh ◽  
Yogesh Kumar ◽  
S. S. Tomar ◽  
Mukesh Kumar ◽  
M. Sharath Chandra ◽  
...  

The Long term experiment (2009-10 to-2018-19) was conducted to study the effects of precision land levelled (PLL) versus traditional land levelled (TLL) systems on aggregate-associated soil organic carbon (SOC) in a farmers participatory fields under sub-tropical ecosystems (Western Uttar Pradesh) of Indian conditions. The significance of this study mainly focus to determine the suitability of various labile carbon fractions as indicators of soil quality and the stability of aggregates plays a vital role in preserving and long term storing of soil organic carbon by implementing Precision Land Levelling under various arable cropping system. The treatment comprised of sixteen alternative arable cropping systems strategies viz. R-WPLL, R-WTLL, S-WPLL, S-WTLL, R-P-MbPLL, R-P-MbTLL, R-P-OPLL, R-P-OTLL, R-C-OPLL, R-C-OTLL, O-W-MbPLL, O-W-MbTLL, M-W-MbPLL, M-W-MbTLL, M-P-MbPLL, and M-P-MbTLL etc were taken with recommended dose of fertilizers and various observations were recorded. The results indicated that the M-P-MbPLL produced 79.5 kgha-1day-1 productivity and used only 110 cm irrigation water which was 48.1 per cent less than irrigation water used for R-WPLL. The land use efficiency under R-P-MbPLL, R-P-OPLL, R-P-MbPLL, R-C-OPLL and M-P-MbPLL were recorded as 86.2, 85.1, 84.8, 84.6 and 83.9%. However, energy value in terms total input energy and energy productivity were 39.9 and 218.5 GJ ha-1 over existing R-W system (32.9 & 105.7 GJ ha-1). The quantity of water used in the R-C-O, M-W-Mb, M-P-Mb, and O-W-Mb were 46.1, 44.9, 40.1 and 36.3 per cent less than quantity of water used for R-W system. Aggregate-associated SOC contents in 0-15 cm depth were recorded highest SOC at 15-30 cm depth in PLL systems as 9.4% for both M-P-MbPLL and M-W-MbPLL. Highest PON change in arable cropping system (30.9 & 40.1%) was found in O-W-Mb with precision land levelling (T11) plots followed by R-P-O with precision land levelling (T7) plots (26.1 & 35.8%) as compared to R-W and S-W system. The values of LFOC in surface soil were 194.7, 187.9, 176.2, 170.9, 168.5, 150.6, 132.8 and 123.8 mgkg−1 in R-P-O, R-C-O, M-W-Mb, O-W-Mb, M-P-Mb, R-P-Mb, R-W and S-W with precision land levelling treatments. Higher SOC sequestration was observed with precision land leveling along with alternative arable cropping systems with O-W-MbPLL, R-C-OPLL, R-P-OPLL, O-W-MbPLL and M-P-MbPLL respectively. Therefore, PLL systems had greater soil surface aggregation and carbon storage, land levelling did not affect SOC patterns across aggregates, but changed the distribution of aggregate size, reflecting that land levelling mainly influenced soil fertility by altering soil structure.


Soil Research ◽  
1996 ◽  
Vol 34 (6) ◽  
pp. 937 ◽  
Author(s):  
ZH Xu ◽  
JN Ladd ◽  
DE Elliott

Assessments of soil nitrogen (N) availability were undertaken using soils sampled at 0-10 and 10-20 cm depths from 123 experimental sites where the responses of cereal crops to N fertilisers were tested, throughout the cereal zone of South Australia. Rates of N mineralisation and percentage N mineralisation, as determined by a laboratory aerobic incubation method, were related to soil properties. Mineralisable N (N mineralised during a Li-week incubation) of 0-10 cm soil varied from 14 to 121 kg N/ha with a median of 50 kg N/ha, and that of 10-20 cm soil, from 5 to 42 kg N/ha (median 19 kg N/ha). Mineralisable N in 0-10 cm soil accounted for 90% of total mineralisable N in 0-20 cm soil. The percentages of N mineralised were generally higher in 0-10 cm soil (0.8-12.5%, median 3.4%) than in 10-20 cm soil (0.4-8.3%, median 2.3%). Soil organic carbon (OC) and total N could be well estimated from each other, and fron! soil pH, bulk density, and held capacity, with coefficients of determination (R2) ranging from 0.64 to 0.78. Overall, either mineralisable N or percentage N mineralisation rate in the surface soils could be well estimated from soil OC, total N, C to N ratio, bulk density, field capacity, and pH (R2, 0.78-0.86 for mineralisable N, and 0.67-0.91 for percentage N mineralisation rate).


2020 ◽  
Vol 71 (4) ◽  
pp. 241-252
Author(s):  
Cecilie Foldal ◽  
Robert Jandl ◽  
Andreas Bohner ◽  
Ambros Berger

Summary Soil bulk density is a required variable for quantifying stocks of elements in soils and is therefore instrumental for the evaluation of land-use related climate change mitigation measures. Our motivation was to derive a set of pedotransfer functions for soil bulk densities usable to accommodate different levels of data availabilities. We derived sets of linear equations for bulk density that are appropriate for different forms of land-use. After introducing uncertainty factors for measured parameters, we ran the linear models repeatedly in a Monte Carlo simulation in order to test the impact of inaccuracy. The reliability of the models was evaluated by a cross-validation. The single best predictor of soil bulk density is the content of soil organic carbon, yielding estimates with an adjusted R2 of approximately 0.5. A slight improvement of the estimate is possible when additionally, soil texture and soil depth are known. Residual analysis advocated the derivation of land-use specific models. Using transformed variables and assessing land-use specific pedotransfer functions, the determination coefficient (adjusted R2) of the multiple linear models ranged from 0.43 in cropland up to 0.65 for grassland soils. Compared to pedotransfer function, from the literature, the performance of the linear modes were similar but more accurate. Taking into account the likely inaccuracies when measuring soil organic carbon, the soil bulk density can be estimated with an accuracy of +/− 9 to 25% depending on land-use. We recommend measuring soil bulk density by standardized sampling of undisturbed soil cores, followed by post-processing of the samples in the lab by internationally harmonized protocols. Our pedotransfer functions are accurately and transparently presented, and derived from well-documented and high-quality soil data sets. We therefore consider them particularly useful in Austria, where the measured values for soil bulk densities are not available.


2013 ◽  
Vol 50 (1) ◽  
pp. 37-44 ◽  
Author(s):  
Shahla Hosseini Bai ◽  
Timothy J. Blumfield ◽  
Frédérique Reverchon

Sign in / Sign up

Export Citation Format

Share Document