scholarly journals Enhancing thermal and mechanical properties of polypropylene using masterbatches of nanoclay and nano-CaCO3: A review

2018 ◽  
Vol 3 (1) ◽  
pp. 19-26
Author(s):  
Achmad Chafidz

Polymer nanocomposites (PNCs) can be considered as promising relatively new types of composite materials. PNCs give opportunity to develop new composites materials with different structure-property relationships compared to their conventional micro/macro scale composites. Polyolefin based nanocomposites nowadays become more important, because this type of composites has been largely used in various industries. For example, polypropylene based nanocomposites have been widely used in automobile – related industries to replace their conventional composites. This review paper will focus on the polypropylene based nanocomposites prepared using masterbatches of nanoclay and nano-CaCO3 via melt compounding method. The thermal and mechanical properties of such nanocomposites were also discussed.

RSC Advances ◽  
2015 ◽  
Vol 5 (105) ◽  
pp. 85996-86005 ◽  
Author(s):  
Keling Hu ◽  
Dongping Zhao ◽  
Guolin Wu ◽  
Jianbiao Ma

A series of thermoplastic polyesters with versatile thermal and mechanical properties were prepared from renewable eugenol, which is extracted from lignocellulosic biomass-clove oil.


2021 ◽  
pp. 095400832199676
Author(s):  
Yuting Ouyang ◽  
Qiu Zhang ◽  
Xiukun Liu ◽  
Ruan Hong ◽  
Xu Xu ◽  
...  

Different ionic liquid modified graphene nanosheets (IG) were induced into polyimide (PI) to improve the tribological, thermal, and mechanical properties of shape memory IG/PI composites. The results demonstrated that when using 1-aminoethyl-3-methylimidazole bromide to modify graphene nanosheets (IG-1), the laser-driven shape recovery rate of IG-1/PI composites (IGPI-1) reached 73.02%, which was 49.36% higher than that of pure PI. In addition, the IGPI-1 composite materials reached the maximum shape recovery rate within 15 s. Additionally, under dry sliding, the addition of IG can significantly improve the tribological properties of composite materials. IGPI-1 exhibited the best self-lubricating properties. Compared with pure PI, the friction coefficient (0.19) and wear rate (2.62 × 10–5) mm3/Nm) were reduced by 44.1% and 24.2%, respectively, and the T10% of IGPI-1 increased by 32.2°C. The Tg of IGPI-1 reached 256.5°C, which was 8.4°C higher than that of pure PI. In addition, the tensile strength and modulus of IGPI-1 reached 82.3 MPa and 1.18 GPa, which were significantly increased by 33.6% and 29.8%, respectively, compared with pure PI. We hope that this work will be helpful for the preparation of shape memory materials with excellent tribological, thermal, and mechanical properties.


Scanning ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Emil Sandoz-Rosado ◽  
Michael R. Roenbeck ◽  
Kenneth E. Strawhecker

High-performance materials like ballistic fibers have remarkable mechanical properties owing to specific patterns of organization ranging from the molecular scale, to the micro scale and macro scale. Understanding these strategies for material organization is critical to improving the mechanical properties of these high-performance materials. In this work, atomic force microscopy (AFM) was used to detect changes in material composition at an extremely high resolution with transverse-stiffness scanning. New methods for direct quantification of material morphology were developed, and applied as an example to these AFM scans, although these methods can be applied to any spatially-resolved scans. These techniques were used to delineate between subtle morphological differences in commercial ultra-high-molecular-weight polyethylene (UHMWPE) fibers that have different processing conditions and mechanical properties as well as quantify morphology in commercial Kevlar®, a high-performance material with an entirely different organization strategy. Both frequency analysis and visual processing methods were used to systematically quantify the microstructure of the fiber samples in this study. These techniques are the first step in establishing structure-property relationships that can be used to inform synthesis and processing techniques to achieve desired morphologies, and thus superior mechanical performance.


2008 ◽  
Vol 47-50 ◽  
pp. 77-80 ◽  
Author(s):  
Vitaliy G. Shevchenko ◽  
Vladimir P. Volkov ◽  
Alexander N. Zelenetsky ◽  
Anatoliy T. Ponomarenko ◽  
Oleg Figovsky

Novel PE- and PP-based electromagnetic wave shielding and absorbing materials with low combustibility, enhanced thermal and mechanical properties, containing graphite, grinded wood and fire retardants, were developed and investigated. Their flame-resistance, thermal and mechanical properties are investigated. Electromagnetic wave reflection coefficients of the materials over the frequency range 20-40 GHz were measured; despite low concentration (10%) of functional filler, reflection coefficient can be as low as -15 dB. Criteria of incombustibility of polymeric composites are formulated: thermochemical, kinetic, thermal, physical and mass transfer. These criteria allowed to set up the principles of decreasing combustibility of polymeric composites. Materials requirements, allowing to choose the most effective shielding and fireproof systems for multicomponent composites, containing polymers, wood and other fillers, were formulated.


2014 ◽  
Vol 87 (2) ◽  
pp. 219-238 ◽  
Author(s):  
Roberto Todeschini ◽  
Viviana Consonni ◽  
Davide Ballabio ◽  
Andrea Mauri ◽  
Matteo Cassotti ◽  
...  

ABSTRACT In this preliminary study, mathematical models based on Quantitative Structure Property Relationships (QSPR) were applied in order to analyze how molecular structure of chloroprene rubber accelerators relates to their rheological and mechanical properties. QSPR models were developed in order to disclose which structural features mainly affect the mechanism of vulcanization. In such a way QSPR can help in a faster and more parsimonious design of new chloroprene rubber curative molecules. Regression mathematical models were calibrated on two rheological properties (scorch time and optimum cure time) and three mechanical properties (modulus 100%, hardness, and elongation at break). Models were calculated using experimental values of 14 accelerators belonging to diverse chemical classes and validated by means of different strategies. All the derived models gave a good degree of fitting (R2 values ranging from 84.5 to 98.7) and a satisfactory predictive power. Moreover, some hypotheses on the correlations between specific structural features and the analyzed rheological and mechanical properties were drawn. Owing to the relatively small set of accelerators used to calibrate the models, these hypotheses should be further investigated and proved.


Sign in / Sign up

Export Citation Format

Share Document