scholarly journals Desarrollo y evaluación de un medio de cultivo alternativo para la multiplicación de Azospirillum brasilense C16 mediante diseños estadísticos secuenciados

2013 ◽  
Vol 13 (2) ◽  
pp. 201 ◽  
Author(s):  
Andrés Moreno-Galván ◽  
Daniel F. Rojas-Tapias ◽  
Ruth Bonilla

<p>Para la producción masiva de inoculantes basados en bacterias promotoras de crecimiento vegetal (PGPR), es fundamental un medio de cultivo de alto rendimiento. La aplicación secuenciada de diseños estadísticos fue usada para optimizar la producción de biomasa de Azospirillum brasilense C16, seis fuentes nutricionales (glicerol, glutamato, manitol, acido cítrico, extracto de levadura y K2HPO4 3H2O) y tres fuentes minerales (MgSO4 7H2O, FeCl3 y NaCl) fueron evaluadas mediante cinco experimentos estadísticos - Placket-Burman, factorial fraccionado, diseño de paso ascendente, análisis de superficie de respuesta y screening mineral, para tal efecto. La composición optimizada del medio (g L-1) fue: 28,33 glutamato, 2,92 extracto de levadura, 1,34 K2HPO4 3H2O, 0,5 MgSO4 7H2O y 0,02 FeCl3, la cual luego de 24 h de incubación permitió producir una cantidad de proteína (32,04 μg) y biomasa seca (1,51 g L-1) del 1,72 y 1,68 veces más alta, respectivamente, en relación al medio de cultivo convencional. </p><p> </p><p><strong>Development and evaluation of an alternative culture medium for mass cultivation of <em>Azospirillum brasilense </em>C16 using sequential statistical Designs </strong></p><p>For mass plant growth-promoting inoculant production, a high-yield culture medium is fundamental. Sequential application of statistical designs was used to optimize <em>Azospirillum brasilense </em>C16 biomass production. Six nutritional (glycerol, glutamate, mannitol, citric acid, yeast extract and K2HPO4 3H2O) and three mineral sources (MgSO4 7H2O, FeCl3 and NaCl) were evaluated using five statistical experiments Placket-Burman, factorial design, steepest ascent, response surface analysis, and mineral screening. The optimum medium composition (g L-1) was as follows: 28.33 glutamate, 2.92 yeast extract, 1.34 K2HPO4 3H2O, 0.5 MgSO4 7H2O and 0.02 FeCl3. After 24 hours of incubation, protein (32.04 μg) and dry biomass (1.51 g L-1) were 1.72 and 1.68 times higher than in conventional growth medium. </p>

2015 ◽  
Vol 7 (1) ◽  
pp. 203-210
Author(s):  
R. Poorniammal ◽  
S. Gunasekaran ◽  
R. Murugesan

In present study, Thermomyces sp. were able to produce high yield of yellow pigments screened. Pigment production by Thermomyces sp was optimized by employing factorial design and response surface techniques in submerged fermentation. The variables evaluated were the concentrations of, sucrose, yeast extract, ammonium sulphate, magnesium sulphate and dipotassium hydrogen phosphate having as response pigment production. One factor at-a-time method was employed for the optimization of media components. Response surface methodology (RSM) optimized these nutrient parameters for maximum yellow pigment production (1387 OD units), which resulted at 35.5 g/L sucrose 5.5 g/L yeast extract, 2.5 g/L NH4SO4, 0.3 g/L MgSO4 and 1.0 g/L K2HPO4 in the medium. Response surface methodology (RSM) was further used to determine the optimum values of process variables for maximum yellow pigment production. The fit of the quadratic model was found to be significant. A significant increase in yellow pigment production was achieved using RSM.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Dayana Morales-Borrell ◽  
Nemecio González-Fernández ◽  
Néstor Mora-González ◽  
Carlos Pérez-Heredia ◽  
Ana Campal-Espinosa ◽  
...  

Abstract Culture medium composition is one of the most important parameters to analyze in biotechnological processes with industrial purposes. The aim of this study was to design of a culture medium for optimal growth of the bacterium Pseudoxanthomonas indica H32 allowing its production as biopesticide and biofertilizer. The influence of several carbon and nitrogen sources and their molar ratios on P. indica H32 growth was investigated. The effect of different micronutrients such as mineral salts and vitamin on P. indica H32 growth was determined as well. A mixture design based on Design-Expert 10.0 Software was performed to optimize the culture medium concentration. Finally, in the designed medium, an attribute of the biological mechanism of action of the P. indica H32 against nematodes, was evaluated: the hydrogen sulfide production. It was found that tested carbon/nitrogen ratios were not a significant influence on P. indica H32 growth. Growth of P. indica H32 was favored with use of sucrose, yeast extract and phosphate buffer without the addition of any tested micronutrients. An optimal concentration of 10 g/L sucrose and 5 g/L yeast extract were obtained at a cost of 0.10 $/L. In this concentration, the specific growth rate (µ) and maximal optical density (Xmax) were equal to 0.439 h− 1 and 8.00 respectively. It was evidenced that under the culture conditions used, P. indica H32 produced hydrogen sulfide. The designed medium led to a 1.08 $/L reduction of costs in comparison to LB medium. These results were critical to carry on with biotechnological development of P. indica H32 as a bioproduct.


2009 ◽  
Vol 10 (1) ◽  
pp. 70 ◽  
Author(s):  
Daniel Fernando Rojas T. ◽  
María Fernanda Garrido R. ◽  
Ruth Rebeca Bonilla B.

<p>El uso indiscriminado de fertilizantes químicos y su proceso de obtención y aplicación ha incrementado los costos de producción agrícola y los problemas ambientales debido a la contaminación del aire, el suelo y las aguas. Se ha planteado como alternativa la aplicación de fertilizantes biológicos como una herramienta económica y limpia para el manejo sostenible de los ecosistemas. Sin embargo, en los procesos de escalamiento de un biofertilizante pueden incrementarse los costos de producción debido al tipo de formulación y a los medios de cultivo empleados para la multiplicación de las bacterias. Esta investigación, con base en el uso secuencial de diseños estadísticos, presenta la estandarización de un medio de cultivo económico para la multiplicación de la cepa C50 de <em>Rhizobium </em>sp. De ocho fuentes nutricionales se seleccionaron cinco, teniendo como criterios los menores costos económicos y la disponibilidad de dichas fuentes; de estas cinco, tres influyeron significativamente sobre el desarrollo de la cepa. La composición optimizada del medio alterno incluyó glicerol, melaza, glutamato, extracto de levadura y sales. No se presentaron diferencias significativas en el crecimiento de la cepa C50 en el medio alterno comparado con el tradicional (levadura-manitol), ni en la viabilidad de la cepa crecida en el medio tradicional respecto al alterno, cuando se inoculó sobre turba. El inoculante conservó su calidad en refrigeración durante 30 días. Las cepas J01, T14 y C2 mostraron buen índice de crecimiento sobre el medio alterno; no se presentaron diferencias significativas en los recuentos entre las cepas J01 y T14, mientras que la cepa C2 creció mejor en el medio alterno.  </p><p><strong><br /></strong></p><p><strong>Standardization of a complex culture media for multiplication of C50 <em>Rhizobium </em>sp. strain</strong> </p>The indiscriminate use of chemical fertilizers, its process of production and its application had increased the costs of agricultural production and the environmental problems because of the pollution of air, soil and water sources. The alternative is the use of biological fertilizers as an economical and clean tool in order to sustainable management of ecosystems. However, in the escalation processes of a biofertilizer the costs of production could increase due to the type of formulation and the culture media used for the multiplication of the bacteria. This research, by using statistical designs sequentially, presents the standardization of an economical culture media used to multiply the strain C50 of <em>Rhizobium </em>sp. From eight nutritional sources, five were selected taking as criteria the low economical costs and the availability of above mentioned nutritional sources; from these five sources, three of them influenced the development of the strain significantly. The optimized composition of the alternative culture media included glycerol, molasses, glutamate, yeast extract and salts. There were no significantly differences in the growth of the strain C50 in the alternative culture media compared with the traditional one (yeast extract – mannitol); nor in viability of the strain growth on traditional media culture compared with the alternative one, when it was inoculated on peat. The inoculants conserved its quality in refrigeration during 30 days. The strains J01, T14 and C2 showed a better rate of growth on the alternative culture media; it was not show significant differences in the counts between the strains J01 and T14; whereas, the strain C2 growth better in the alternative culture media.


2011 ◽  
Vol 12 (2) ◽  
pp. 151 ◽  
Author(s):  
Andrés Eduardo Moreno G. ◽  
Daniel Fernando Rojas T. ◽  
Ruth Rebeca Bonilla B.

<p>La multiplicación masiva de bacterias promotoras de crecimiento vegetal es un aspecto fundamental para la producción de bioinoculantes. Con el objetivo de evaluar una estrategia experimental que permitiera identificar factores nutricionales con influencia sobre la multiplicación de Azotobacter chroococcum AC1, se realizó la aplicación secuencial de diseños estadísticos (Placket-Burman, diseño factorial 27-3, máxima respuesta ascendente y análisis de superficie de respuesta). Se evaluaron once fuentes nutricionales: glucosa, sacarosa, glicerol, almidón, glutamato monosódico, urea, levadura comercial entera, extracto de levadura, MgSO4·7H2O, K2HPO4·3H2O y solución de microelementos. Los resultados evidenciaron que la aplicación en secuencia de diseños estadísticos demostró ser una estrategia confiable permitiendo una producción de células viables de 9x109 ufc/mL luego de 24 horas del proceso de multiplicación, empleando una combinación óptima estimada basada en extracto de levadura, glutamato monosódico, glucosa, K2HPO4·3H2O, MgSO4·7H2O y solución de micronutrientes.</p><p> </p><p><strong>Sequential statistical design application in identification of Azotobacter chroococcum AC1 nutritional sources.</strong></p><p>The mass multiplication of plant growth promoting bacteria is a fundamental aspect in the production of bioinoculants. In order to evaluate an experimental strategy that would identify nutritional factors that influence the growth of Azotobacter chroococcum AC1 strain, the sequential application of statistical designs (Placket-Burman design, 27-3 factorial design, steepest ascent method, and response surface analysis) was performed. Eleven nutritional sources: glucose, sucrose, glycerol, starch, monosodium glutamate, urea, commercial yeast, yeast extract, MgSO4·7H2O, K2HPO4·3H2O, and mineral solution were evaluated. Sequential statistical design application proved to be a reliable experimental strategy, allowing 9x109 cfu/ mL production from an optimal ration between yeast extract, monosodium glutamate, glucose, K2HPO4·3H2O, MgSO4·7H2O, and mineral solution.</p>


Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 658
Author(s):  
Renfei Zhao ◽  
Feiyu Duan ◽  
Jingyi Yang ◽  
Min Xiao ◽  
Lili Lu

This work established an integrated utilization of dairy whey in β-galactosidase production from Lactobacillus bulgaricus and prebiotics synthesis by the probiotic enzyme. A cost-effective whey-based medium was newly developed for culturing Lactobacillus bulgaricus to produce β-galactosidase. The medium was optimized through response surface methodology (RSM) involving a series of statistical designs, such as the Plackett–Burman design, steepest ascent experiment, and central composite design. Under the optimized medium, the β-galactosidase activity of L. bulgaricus reached 2034 U/L, which was twice that produced from the traditional MRS medium. The cells of L. bulgaricus harvested from the whey-based medium were subsequently treated with lysozyme. The resulting crude enzyme was used as an efficient catalyst, which catalyzed the synthesis of the prebiotic galacto-oligosaccharides (GOS) in a high yield of 44.7% by using whey (200 g/L) as the substrate. The sugar mixture was further purified by activated charcoal adsorption, thereby yielding a high-purity level of 77.6% GOS.


2011 ◽  
Vol 365 ◽  
pp. 312-319
Author(s):  
Tao Xiong ◽  
Yin Huang ◽  
Ming Yong Xie

MRS culture medium was used as the basic medium for optimizing the fermented condition of Lactobacillus. rhamnosus. The four significant factors (beef extract, tween-80, peptone, diammonium citrate) were screened from these components by using a Plackeet-Burman design. Steepest ascent path was adopted to approach the optimal region, and then the Central Composite Design was used to determine the optimal levels of the main factors. Considering the fit model, cost and operation, the optimal conditions were determined as follows: beef extract 2.6%, tween-80 0.3%, peptone 2%, diammonium citrate 0.4%, with other components remaining the same, 3% inoculation, 18h culture at 37¡æ.Under such conditions, the experimental value of cell concentration were 3.54×109cfu/ml and 2.19-fold live bacteria counts in MRS-based culture medium, showing no difference with predicted value 3.68×109cfu/ml.


2021 ◽  
Vol 25 (2) ◽  
pp. 261-274
Author(s):  
Chi Zhang ◽  
Guowei Shu ◽  
Ni Lei ◽  
Fangfang Cheng ◽  
Wenhui Li ◽  
...  

Abstract Cell envelope proteases (CEPs) can break down milk protein into peptides with different functions, which are of great benefit to human health. Therefore, the high-yield CEPs of Lactobacillus plantarum have the potential to produce functional dairy products. In previous experiments, we found that Na2HPO4, inulin, casein peptone and leucine have significant effects on CEP production by Lactobacillus plantarum LP69. So we proceeded to optimize the composition of the CEP-producing culture medium of L. plantarum through Box-Behnken design and response surface methodology. The protease activity, protein content and specific activity of CEPs produced by L. plantarum by inulin (0.2, 0.3, 0.4 %), casein peptone (0.4, 0.6, 0.8 %), Na2HPO4 (0.50, 0.52, 0.54 %) and leucine (14, 16, 18 mg/L) were evaluated. The optimal ratio of medium is 0.4 % inulin, 0.66 % casein peptone, 0.5 % Na2HPO4 and 14.04 mg/L Leucine. The final enzyme activity reached (24.46±0.81) U/mL, and the specific activity reached (1.41±0.46) U/mg.


Agrologia ◽  
2018 ◽  
Vol 1 (1) ◽  
Author(s):  
S. Tuhuteru ◽  
Meity L Hehanussa ◽  
Simon H.T Raharjo

Dendrobium anosmum is one of natural orchids in Indonesia. Optimization of medium composition for orchid propagation through in vitro culture is necessary to enhance propagule multiplication capabilities and quality. This study was aimed to study the influence of concentration of coconut water in culture medium on in vitro growth and development of D. anosmum orchid species and to determine the optimal coconut water concentration in culture media.  The experiment were arranged in a Completely Randomized Design with four treatments and eight replications. The treatments consisted of the addition of coconut water with concentrations: 0 ml•l -1 (control), 50 ml•l-1, 100 ml•l-1 and 150 ml•l-1. The results showed that addition of coconut water in culture medium gave different effect on shoot growth and multiplication of D. anosmum orchids.  Coconut water concentration of 100 ml•l-1 was the best concentration for growth and multiplication of D. anosmum orchids, based on both shoots and roots growth, plantlet height and wet weight.


Author(s):  
Bruna O. S. Câmara ◽  
Bruno M. Bertassoli ◽  
Natália M. Ocarino ◽  
Rogéria Serakides

The use of stem cells in cell therapies has shown promising results in the treatment of several diseases, including diabetes mellitus, in both humans and animals. Mesenchymal stem cells (MSCs) can be isolated from various locations, including bone marrow, adipose tissues, synovia, muscles, dental pulp, umbilical cords, and the placenta. In vitro, by manipulating the composition of the culture medium or transfection, MSCs can differentiate into several cell lineages, including insulin-producing cells (IPCs). Unlike osteogenic, chondrogenic, and adipogenic differentiation, for which the culture medium and time are similar between studies, studies involving the induction of MSC differentiation in IPCs differ greatly. This divergence is usually evident in relation to the differentiation technique used, the composition of the culture medium, the cultivation time, which can vary from a few hours to several months, and the number of steps to complete differentiation. However, although there is no “gold standard” differentiation medium composition, most prominent studies mention the use of nicotinamide, exedin-4, ß-mercaptoethanol, fibroblast growth factor b (FGFb), and glucose in the culture medium to promote the differentiation of MSCs into IPCs. Therefore, the purpose of this review is to investigate the stages of MSC differentiation into IPCs both in vivo and in vitro, as well as address differentiation techniques and molecular actions and mechanisms by which some substances, such as nicotinamide, exedin-4, ßmercaptoethanol, FGFb, and glucose, participate in the differentiation process.


Sign in / Sign up

Export Citation Format

Share Document