scholarly journals Statistical optimization of culture medium for yellow pigment production by Thermomyces sp.

2015 ◽  
Vol 7 (1) ◽  
pp. 203-210
Author(s):  
R. Poorniammal ◽  
S. Gunasekaran ◽  
R. Murugesan

In present study, Thermomyces sp. were able to produce high yield of yellow pigments screened. Pigment production by Thermomyces sp was optimized by employing factorial design and response surface techniques in submerged fermentation. The variables evaluated were the concentrations of, sucrose, yeast extract, ammonium sulphate, magnesium sulphate and dipotassium hydrogen phosphate having as response pigment production. One factor at-a-time method was employed for the optimization of media components. Response surface methodology (RSM) optimized these nutrient parameters for maximum yellow pigment production (1387 OD units), which resulted at 35.5 g/L sucrose 5.5 g/L yeast extract, 2.5 g/L NH4SO4, 0.3 g/L MgSO4 and 1.0 g/L K2HPO4 in the medium. Response surface methodology (RSM) was further used to determine the optimum values of process variables for maximum yellow pigment production. The fit of the quadratic model was found to be significant. A significant increase in yellow pigment production was achieved using RSM.

2014 ◽  
Vol 955-959 ◽  
pp. 848-854
Author(s):  
Yin Xiang Gao ◽  
Lei Yang ◽  
Yuan Gang Zu ◽  
Li Ping Yao

An ultrasound-assisted procedure for the extraction of pectin from heads ofHelianthus annuusL. (sunflower) was established. A Box–Behnken design (BBD) was employed to optimize the extraction temperature (X1: 30–50°C), extraction time (X2: 20–40 min) and pH (X3: 2.5–3.5) to obtain a high yield of pectin with high degree of esterification (DE) from sunflower heads. Analysis of variance showed that the contribution of a quadratic model was significant for the pectin extraction yield and DE. An optimization study using response surface methodology was performed and 3D response surfaces were plotted from the mathematical model. According to the RSM model, the highest pectin yield (23.11 ± 0.08%) and DE (39.85 ± 0.14%) can be achieved when the UAE process is carried out at 50°C for 40min using a hydrochloric acid solution of pH 3.0. These results suggest that ultrasound-assisted extraction could be a good option for the extraction of functional pectin from sunflower heads at industrial level.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
C. K. Venil ◽  
V. Mohan ◽  
P. Lakshmanaperumalsamy ◽  
M. B. Yerima

An indigenous bacterium, Bacillus REP02, was isolated from locally sourced chromium electroplating industrial effluents. Response surface methodology was employed to optimize the five critical medium parameters responsible for higher % Cr2+ removal by the bacterium Bacillus REP02. A three-level Box-Behnken factorial design was used to optimize K2HPO4, yeast extract, MgSO4, NH4NO3, and dextrose for Cr2+ removal. A coefficient of determination (R2) value (0.93), model F-value (3.92) and its low P-value (F<0.0008) along with lower value of coefficient of variation (5.39) indicated the fitness of response surface quadratic model during the present study. At optimum parameters of K2HPO4 (0.6 g L−1), yeast extract (5.5 g L−1), MgSO4 (0.04 g L−1), NH4NO3 (0.20 g L−1), and dextrose (12.50 g L−1), the model predicted 98.86% Cr2+ removal, and experimentally, 99.08% Cr2+ removal was found.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Pilanee Vaithanomsat ◽  
Molnapat Songpim ◽  
Taweesiri Malapant ◽  
Akihiko Kosugi ◽  
Warunee Thanapase ◽  
...  

A newly isolated fungusAspergillus nigerSOI017 was shown to be a good producer of β-glucosidase from all isolated fungal strains. Fermentation condition (pH, cellobiose concentration, yeast extract concentration, and ammonium sulfate concentration) was optimized for producing the enzyme in shake flask cultures. Response surface methodology was used to investigate the effects of 4 fermentation parameters (yeast extract concentration, cellobiose concentration, ammonium sulfate concentration, and pH) on β-glucosidase enzyme production. Production of β-glucosidase was most sensitive to the culture medium, especially the nitrogen source yeast extract. The optimized medium for producing maximum β-glucosidase specific activity consisted of 0.275% yeast extract, 1.125% cellobiose, and 2.6% ammonium sulfate at a pH value of 3.


Marine Drugs ◽  
2021 ◽  
Vol 19 (5) ◽  
pp. 248
Author(s):  
Mekala Venkatachalam ◽  
Alain Shum-Chéong-Sing ◽  
Yanis Caro ◽  
Laurent Dufossé ◽  
Mireille Fouillaud

Pigment production from filamentous fungi is gaining interest due to the diversity of fungal species, the variety of compounds synthesized, and the possibility of controlled massive productions. The Talaromyces species produce a large panel of metabolites, including Monascus-like azaphilone pigments, with potential use as natural colorants in industrial applications. Optimizing pigment production from fungal strains grown on different carbon and nitrogen sources, using statistical methods, is widespread nowadays. The present work is the first in an attempt to optimize pigments production in a culture of the marine-derived T. albobiverticillius 30548, under the influence of several nutrients sources. Nutrient combinations were screened through the one-variable-at-a-time (OVAT) analysis. Sucrose combined with yeast extract provided a maximum yield of orange pigments (OPY) and red pigments (RPY) (respectively, 1.39 g/L quinizarin equivalent and 2.44 g/L Red Yeast pigment equivalent), as well as higher dry biomass (DBW) (6.60 g/L). Significant medium components (yeast extract, K2HPO4 and MgSO4·7H2O) were also identified from one-variable-at-a-time (OVAT) analysis for pigment and biomass production. A five-level central composite design (CCD) and a response surface methodology (RSM) were applied to evaluate the optimal concentrations and interactive effects between selected nutrients. The experimental results were well fitted with the chosen statistical model. The predicted maximum response for OPY (1.43 g/L), RPY (2.59 g/L), and DBW (15.98 g/L) were obtained at 3 g/L yeast extract, 1 g/L K2HPO4, and 0.2 g/L MgSO4·7H2O. Such optimization is of great significance for the selection of key nutrients and their concentrations in order to increase the pigment production at a pilot or industrial scale.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Mojdeh Dinarvand ◽  
Malahat Rezaee ◽  
Malihe Masomian ◽  
Seyed Davoud Jazayeri ◽  
Mohsen Zareian ◽  
...  

The study is to identify the extraction of intracellular inulinase (exo- and endoinulinase) and invertase as well as optimization medium composition for maximum productions of intra- and extracellular enzymes fromAspergillus nigerATCC 20611. From two different methods for extraction of intracellular enzymes, ultrasonic method was found more effective. Response surface methodology (RSM) with a five-variable and three-level central composite design (CCD) was employed to optimize the medium composition. The effect of five main reaction parameters including sucrose, yeast extract, NaNO3, Zn+2, and Triton X-100 on the production of enzymes was analyzed. A modified quadratic model was fitted to the data with a coefficient of determination (R2) more than 0.90 for all responses. The intra-extracellular inulinase and invertase productions increased in the range from 16 to 8.4 times in the optimized medium (10% (w/v) sucrose, 2.5% (w/v) yeast extract, 2% (w/v) NaNO3, 1.5 mM (v/v) Zn+2, and 1% (v/v) Triton X-100) by RSM and from around 1.2 to 1.3 times greater than in the medium optimized by one-factor-at-a-time, respectively. The results of bioprocesses optimization can be useful in the scale-up fermentation and food industry.


2019 ◽  
pp. 49-59
Author(s):  
Nu Linh Giang Ton ◽  
Thi Hoai Nguyen ◽  
Quoc Hung Vo

Avocado peel has been considered as a potential source of natural antioxidants in which phenolics are among the most important compounds. Therefore, this study aims to optimize the extraction process of phenolics using response surface methodology and evaluate the corresponding antioxidant activity. From the quadratic model, the optimal condition was determined including the ethanol concentration 54.55% (v/v), the solvent/solute ratio 71.82/1 (mL/g), temperature 53.03 oC and extraction time 99.09 min. The total phenolic content and the total antioxidant capacity at this condition with minor modifications were 26,74 ± 0,04 (mg GAE/g DW) and 188.06 ± 1.41 (mg AAE/g DW), respectively. The significant correlation between total phenolic content and total antioxidant capacity was also confirmed. Key words: response surface methodology, central composite rotatable design, total phenolic content, total antioxidant capacity, avocado peel


2021 ◽  
Vol 11 (4) ◽  
pp. 1739
Author(s):  
Muhammad Ajaz Ahmed ◽  
Jae Hoon Lee ◽  
Joon Weon Choi

A synergistic combination of dioxane, acetic acid, and HCl was investigated for lignin extraction from pine wood biomass. After initial screening of reagent combination, response surface methodology (RSM) was used to optimize the lignin yield with respect to the variables of time 24–72 h, solids loading 5–15%, and catalyst dose 5–15 mL. A quadratic model predicted 8.33% of the lignin yield, and it was further confirmed experimentally and through the analysis of variance (ANOVA). Lignin at optimum combination exhibited features in terms of derivatization followed by reductive cleavage (DFRC) with a value of (305 µmol/gm), average molecular weights of 4358 and polydispersity of 1.65, and 2D heteronuclear single quantum coherence nuclear magnetic resonance spectrum (2D-HSQC NMR) analysis showing relative β-O-4 linkages (37.80%). From here it can be suggested that this fractionation can be one option for high quality lignin extraction from lignocellulosic biomass.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3150
Author(s):  
Mengwei Xu ◽  
Chao Huang ◽  
Jing Lu ◽  
Zihan Wu ◽  
Xianxin Zhu ◽  
...  

Magnetic MXene composite Fe3O4@Ti3C2 was successfully prepared and employed as 17α-ethinylestradiol (EE2) adsorbent from water solution. The response surface methodology was employed to investigate the interactive effects of adsorption parameters (adsorption time, pH of the solution, initial concentration, and the adsorbent dose) and optimize these parameters for obtaining maximum adsorption efficiency of EE2. The significance of independent variables and their interactions were tested by the analysis of variance (ANOVA) and t-test statistics. Optimization of the process variables for maximum adsorption of EE2 by Fe3O4@Ti3C2 was performed using the quadratic model. The model predicted maximum adsorption of 97.08% under the optimum conditions of the independent variables (adsorption time 6.7 h, pH of the solution 6.4, initial EE2 concentration 0.98 mg L−1, and the adsorbent dose 88.9 mg L−1) was very close to the experimental value (95.34%). pH showed the highest level of significance with the percent contribution (63.86%) as compared to other factors. The interactive influences of pH and initial concentration on EE2 adsorption efficiency were significant (p < 0.05). The goodness of fit of the model was checked by the coefficient of determination (R2) between the experimental and predicted values of the response variable. The response surface methodology successfully reflects the impact of various factors and optimized the process variables for EE2 adsorption. The kinetic adsorption data for EE2 fitted well with a pseudo-second-order model, while the equilibrium data followed Langmuir isotherms. Thermodynamic analysis indicated that the adsorption was a spontaneous and endothermic process. Therefore, Fe3O4@Ti3C2 composite present the outstanding capacity to be employed in the remediation of EE2 contaminated wastewaters.


Author(s):  
Zhao-Jun Wei ◽  
Le-Chun Zhou ◽  
Hua Chen ◽  
Gui-Hai Chen

Moranoline (1-Deoxynojirimycin, DNJ) is a piperidine alkaloid, and shows high inhibit activities to glucoamylase and ?-glucosidase. One DNJ high-yield strain of Streptomyces lawendulae was obtained after isolated form soil and mutated with the ultra violet (UV) and ethyl sulfate (DES), which named as TB-412, and can produce DNJ with 35.925 mg/L. Response surface methodology (RSM) was applied to optimize the parameters of DNJ yield from S. lawendulae TB-412. The effects of independent variables of fermentation, including time, temperature, initial pH and the soluble starch content were investigated. The statistical analysis showed that the fermentation time, pH and the soluble starch content, and the quadratics of time, temperature, pH and the soluble starch content, as well as the interactions between fermentation time and pH, and time and the soluble starch content, showed significant effects on DNJ yield. The optimal process parameters for DNJ production within the experimental range of the variables researched was at 11d, 27 °C, pH 7.5, and 8% soluble starch content. At this condition, the DNJ yield was predicted to be 42.875 mg/L.


Sign in / Sign up

Export Citation Format

Share Document