scholarly journals Cloud Connected Non-Invasive Medical Device for Instant Left Ventricular Dysfunction Assessment via Any Smartphone (Preprint)

2018 ◽  
Author(s):  
Mark Skowronski ◽  
Kaustubh Kale ◽  
Steven Borzak ◽  
Robert Chait

BACKGROUND Left Ventricular (LV) dysfunction is the inability of the heart to effectively pump blood through the circulatory system, leading to compensation and eventually heart failure (HF). Ninety-one million American adults with predisposing conditions are at risk for HF and need better screening and diagnosis to prevent disease progression, and 24 million Americans with diagnosed HF need better monitoring to reduce the high hospital readmission rates (25% within 30 days; 50% within 6 months). This epidemic of HF is causing a significant burden on our health care system, with $20 billion in direct medical cost related to HF and $1 billion in in-patient hospital costs annually. Clinical interventions based on standard measurements (blood pressure, weight, electrocardiograms) have not demonstrated a significant reduction in readmissions or all-cause mortality within 180 days after enrollment. Successful treatment may be determined from 2D transthoracic echocardiography (echo) or right heart catherization, but these gold standard methods have limitations of cost, accessibility, and availability of sonographers and cardiologists. An alternative is the HEMOTAG CardioPulmonary Assessment System (CPAS), a new cloud-connected medical device that delivers cardiac time intervals comparable to the gold standard measurements of an echo from an easy-to-use, noninvasive device accessible via any smartphone. OBJECTIVE Given the clinical and economic impact of LV dysfunction and in view of the cost and accessibility of existing devices, there is a need for accurate, absolute, and actionable measurements, available instantly through a noninvasive and easy-to-use system. With the ability of provide rapid assessment of LV dysfunction in adults, keeping patients healthy and safe. The objective of the current study was to compare HEMOTAG to an echo for accuracy in assessment of LV dysfunction, using heart sounds and an ECG signal transduced via 3 thoracic electrodes. METHODS One hundred twenty-three consecutive patients undergoing 2D transthoracic echocardiograms were recruited at an outpatient cardiology clinic from March 2016 through February 2017. Conventional echo variables and cardiac time intervals were assessed, and all patients were analyzed using HEMOTAG which recorded multi-channel acoustic and ECG data. LV dysfunction was assessed using the 2016 American Society of Echocardiography (ASE) standard and compared to cardiac time intervals from HEMOTAG. Patients were separated by age for comparisons. HEMOTAG indices were then assessed to identify normal/abnormal LV function. RESULTS ASE diagnoses: 46 normal, 21 heart failure with preserved ejection fraction (HFpEF), 15 heart failure with reduced ejection fraction (HFrEF), and 41 indeterminate patients. HFrEF was defined as EF <53%, and systolic time ratio (STR=pre-ejection period/ejection time). 0.3 was a sensitive measure for detecting reduced EF as in HFrEF. Detecting EF <53% in patients older than 60: HEMOTAG STR sensitivity=65%, specificity=80%, AUC=.765; Echo STR sensitivity=85%, specificity=80%, AUC=0.895. CONCLUSIONS HEMOTAG represents a potentially widely applicable technology for the assessment of LV dysfunction via a noninvasive approach, providing absolute assessment (without requiring certified technicians to operate or interpretation of an echo) and enabling rapid, real-time, anywhere, anytime assessment of LV dysfunction.

2019 ◽  
Vol 21 (Supplement_M) ◽  
pp. M17-M19 ◽  
Author(s):  
Jelena Čelutkienė ◽  
Ilaria Spoletini ◽  
Andrew J S Coats ◽  
Ovidiu Chioncel

Abstract Imaging modalities are used for screening, risk stratification and monitoring of heart failure (HF). In particular, echocardiography represents the cornerstone in the assessment of left ventricular (LV) dysfunction. Despite the well-known limitations of LV ejection fraction, this parameter, repeated assessment of LV function is recommended for the diagnosis and care of patients with HF and provides prognostic information. Left ventricular ejection fraction (LVEF) has an essential role in phenotyping and appropriate guiding of the therapy of patients with chronic HF. This document reflects the key points concerning monitoring LV function discussed at a consensus meeting on physiological monitoring in the complex multi-morbid HF patient under the auspices of the Heart Failure Association of the ESC.


2015 ◽  
Vol 23 (4) ◽  
pp. 397-406 ◽  
Author(s):  
Adriana Iliesiu ◽  
Alexandru Campeanu ◽  
Daciana Marta ◽  
Irina Parvu ◽  
Gabriela Gheorghe

Abstract Background. Oxidative stress (OS) and inflammation are major mechanisms involved in the progression of chronic heart failure (CHF). Serum uric acid (sUA) is related to CHF severity and could represent a marker of xanthine-oxidase activation. The relationship between sUA, oxidative stress (OS) and inflammation markers was assessed in patients with moderate-severe CHF and reduced left ventricular (LV) ejection fraction (EF). Methods. In 57 patients with stable CHF, functional NYHA class III, with EF<40%, the LV function was assessed by N-terminal of the prohormone brain natriuretic peptide (NT-proBNP) levels and echocardiographically through the EF and E/e’ ratio, a marker of LV filling pressures. The relationship between LV function, sUA, malondialdehyde (MDA), myeloperoxidase (MPO), paraoxonase 1 (PON-1) as OS markers and high sensitivity C-reactive protein (hsCRP) and interleukin 6 (IL-6) as markers of systemic inflammation was evaluated. Results. The mean sUA level was 7.9 ± 2.2 mg/dl, and 61% of the CHF patients had hyperuricemia. CHF patients with elevated LV filling pressures (E/e’ ≥ 13) had higher sUA (8.6 ± 2.3 vs. 7.3 ± 1.4, p=0.08) and NT-proBNP levels (643±430 vs. 2531±709, p=0.003) and lower EF (29.8 ± 3.9 % vs. 36.3 ± 4.4 %, p=0.001). There was a significant correlation between sUA and IL-6 (r = 0.56, p<0.001), MDA (r= 0.49, p= 0.001), MPO (r=0.34, p=0.001) and PON-1 levels (r= −0.39, p= 0.003). Conclusion. In CHF, hyperuricemia is associated with disease severity. High sUA levels in CHF with normal renal function may reflect increased xanthine-oxidase activity linked with chronic inflammatory response.


2011 ◽  
Vol 109 (suppl_1) ◽  
Author(s):  
Jordan Lancaster ◽  
Elizabeth Juneman ◽  
Nicholle Johnson ◽  
Joseph Bahl ◽  
Steven Goldman

Background: Cell-based regenerative therapies hold promise as a new treatment for heart failure. Tissue engineered scaffolds used for cell delivery enhance potential improvements in cardiac function by providing the structural and nutrient support for transplanted cell survival, integration, and re-population of injured tissues. Previously, our laboratory reported improvements in left ventricular (LV) function in rats with chronic heart failure (CHF) after placement of a neonatal cardiomyocyte (NCM) seeded 3-dimensional fibroblast construct (3DFC). In brief, 3 weeks after implantation of the NCM-3DFC, LV function improves by increasing (p<0.05) ejection fraction 26% and cardiac index 33%, while decreasing (p<0.05) LV end diastolic pressure 38%. The current report focuses on NCM survival and LV improvements out to 7 weeks post NCM-3DFC implantation. Methods and Results: Cardiomyocytes were isolated from neonatal rat hearts and seeded onto a 3DFC. We evaluated NCM-3DFC in vitro for cellular organization and the presence of functional gap junctions, which demonstrated extensive cell-to-cell connectivity. At 5 days in culture, the seeded patch contracted spontaneously in a rhythmic and directional fashion, beating at 43±3 beats/min with a mean displacement of 1.3±0.3 mm and contraction velocity of 0.8±0.2 mm/sec. The seeded patch could be electrically paced at near physiological rates (270±30 beats/min) while maintaining coordinated, directional contractions. For in vivo evaluation, rats underwent coronary artery ligation and allowed to recover for 3 weeks to establish CHF. NCM-3DFC were implanted 3 weeks after ligation and evaluated 3 and 7 weeks later (6 and 10 weeks after ligation respectively). Live cell tracking of implanted NCM using Q-Dots revealed ∼9% survival of transplanted cells 3 weeks after implantation. In addition, improvements in LV function continued at 7 weeks after implantation of the NCM-3DFC by increasing (p<0.05) ejection fraction 37%. Conclusion: A multicellular, electromechanically organized, cardiomyocyte scaffold, engineered in vitro can improve LV function when implanted directly on the hearts of rats with CHF; the transplanted cells survive and improve LV function chronically.


2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
K Liang ◽  
R Hearse-Morgan ◽  
S Fairbairn ◽  
Y Ismail ◽  
AK Nightingale

Abstract Funding Acknowledgements Type of funding sources: None. BACKGROUND The recent Heart Failure Association (HFA) of the European Society of Cardiology (ESC) consensus guidelines on diagnosis of heart failure with preserved ejection fraction (HFpEF) have developed a simple diagnostic algorithm for clinical use. PURPOSE To assess whether echocardiogram (echo) parameters needed to assess diastolic function are routinely collected in patients referred for assessment of heart failure symptoms. METHODS Retrospective analysis of echo referrals in January 2020 were assessed for parameters of diastolic function as per step 2 of the HF-PEFF diagnostic algorithm.  Echo images and clinical reports were reviewed. Electronic records were utilised to obtain clinical history, blood results (NT-proBNP) and demographic data. RESULTS 1330 patients underwent an echo in our department during January 2020. 83 patients were referred with symptoms of heart failure without prior history of cardiac disease; 20 patients found to have impaired left ventricular (LV) function were excluded from analysis. Of the 63 patients with possible HFpEF, HF-PEFF score was low in 18, intermediate in 33 and high in 12. Median age was 68 years (range 32 to 97 years); 25% had a BMI &gt;30. There was a high prevalence of hypertension (52%), diabetes (19%) and atrial fibrillation (40%) (cf. Table 1). Body surface area (BSA) was documented in 65% of echo reports. Most echo parameters were recorded with the exception of global longitudinal strain (GLS) and indexed LV mass (cf. image 1). NT-proBNP was recorded in only 20 patients (31.7%). 12 patients with an intermediate HF-PEFF score could have been re-categorised to a high score depending on GLS and NT-proBNP (which were not recorded). CONCLUSION More than three quarters of echoes acquired in our department obtained the relevant parameters to assess diastolic function. The addition of BSA, and inclusion of NT-proBNP, and GLS would have been additive to a third of ‘intermediate’ patients to determine definite HFpEF. Our study demonstrates that the current HFA-ESC diagnostic algorithm and HF-PEFF scoring system are easy to use, highly relevant and applicable to current clinical practice. Age &gt;70 years 29 (46.0%) Obesity (BMI &gt;30) 16 (25.4%) Diabetes 12 (19%) Hypertension 33 (52.4%) Atrial Fibrillation 25 (39.7%) ECG abnormalities 18 (28.5%) Table 1. Prevalence of Clinical Risk Factors Abstract Figure. Image 1. HFPEFF score & echo parameters


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Anett Jannasch ◽  
Antje Schauer ◽  
Virginia Kirchhoff ◽  
Runa Draskowsi ◽  
Claudia Dittfeld ◽  
...  

Background: The novel MuRF1 inhibitor EMBL205 attenuates effectively developing skeletal muscle atrophy and dysfunction in animals with heart failure with preserved ejection fraction (HFpEF, ZSF1 rat model). The impact of EMBL205 on myocardial function in the HFpEF setting is currently unknown and was evaluated in ZSF1 rats. Methods: 20 wks-old female obese ZSF1 rats received EMBL205 (12 wks, conc. of 0.1% in chow; HFpEF-EMBL205). Age-matched untreated lean (con) and obese (HFpEF) ZSF1 rats served as controls. At 32 wks of age left ventricular (LV)-, aortic valve (AV) function and LV end diastolic pressure (LVEDP) was determined by echocardiography and invasive hemodynamic measurements. LV expression of collagen 1A (Col1A) and 3A (Col3A) was assessed by qRT-PCR, MMP2 expression was obtained by zymography and perivascular fibrosis was quantified in histological sections. Results: Development of HFpEF in ZSF1 obese animals is associated with cardiac enlargement and hypertrophy, as evident by increased myocardial weight, an increase in end diastolic volume (EDV) and LV anterior and posterior wall diameters. Diastolic LV-function is disturbed with elevation of E/é, an increased LVEDP and a preserved LV ejection fraction. AV peak velocity and peak gradient are significantly increased and AV opening area (AVA) significantly decreased. Col1A and Col3A expression are increased in HFpEF animals. EMBL205 treatment results in a significant reduction of myocardial weight and a trend towards lower EDV compared to HFpEF group. EMBL205 attenuates the increase in E/é, LVEDP, AV peak gradient and the decrease of AVA. EMBL205 significantly reduces Col3A expression and a trend for Col1A expression is seen. Increased perivascular fibrosis and MMP2 expression in HFpEF is extenuated by EMBL205 treatment (table 1). Conclusions: Application of EMBL205 attenuated the development of pathological myocardial alterations associated with HFpEF in ZSF1rats due to antifibrotic effects.


2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
F Sahiti ◽  
C Morbach ◽  
C Henneges ◽  
M Hanke ◽  
R Ludwig ◽  
...  

Abstract OnBehalf AHF Registry Background & Aim A novel echocardiographic method to non-invasively determine left ventricular (LV) myocardial work (MyW) based on speckle-tracking derived longitudinal strain and blood pressure has recently been validated against invasive reference measurements. MyW is considered less load-dependent than LV ejection fraction (EF) and LV longitudinal strain. We investigated MyW indices in patients with reduced ejection fraction (LVEF &lt;40%; HFrEF) and patients with preserved ejection fraction (LVEF ≥50%, HFpEF) admitted for acutely decompensated heart failure (AHF). Methods The AHF registry is a monocentric prospective follow-up study that comprehensively phenotypes consecutive patients hospitalized for AHF. Echocardiography was performed on the day of admission. MyW assessment was performed off-line using EchoPAC (GE, version 202). Here we present MyW indices and performed two-sided t-tests to analyze differences in numerical baseline covariates. Results We analyzed the echocardiograms of 94 AHF patients (72 ± 10 years; 36% female). 46 patients (49%) had an LVEF &lt;40%, while 48 patients (51%) presented with LVEF ≥50%. HFrEF patients were younger, less often female, and hat lower blood pressure (table). Consistent with lower LVEF, HFrEF patients had less negative global longitudinal strain and lower global constructive work, when compared to HFpEF patients. Since HFrEF patients also had higher global wasted work, this yielded a lower myocardial work efficiency compared to HFpEF patients (table). Conclusions This analysis in patients with AHF exhibited marked differences in MyW indices according to subgroups with HFrEF and HFpEF, thus adding information to the classical measures of LV function. Future research has to determine whether constructive and/or wasted MyW are valuable diagnostic or therapeutic targets in patients with AHF. Abstract P803 Figure.


2019 ◽  
Vol 28 (01) ◽  
pp. 044-049
Author(s):  
Sidhi Purwowiyoto ◽  
Budhi Purwowiyoto ◽  
Amiliana Soesanto ◽  
Anwar Santoso

Exercise improves morbidity, fatality rate, and quality of life in heart failure with low ejection fraction, but fewer data available in heart failure with preserved ejection fraction (HFPEF).The purpose of this study is to test the hypothesis that exercise training might improve the longitudinal intrinsic left ventricular (LV) function in HFPEF patients.This quasi-experimental study had recruited 30 patients with HFPEF. Exercise training program had been performed for a month with a total of 20 times exercise sessions and evaluated every 2 weeks. Echocardiography was performed before sessions, second week and fourth week of exercise training. Six-minute walk tests (6MWTs) and quality-of-life variables using Minnesota living with HF scoring and the 5-item World Health Organization Well-Being Index scoring were measured before and after exercise as well.Left ventricular filling pressure, represented by the ratio of early diastolic mitral flow velocity/early diastolic annular velocity and left atrial volume index, improved during exercise. The longitudinal intrinsic LV function, represented by four-chamber longitudinal strain, augmented during exercise (p < 0.001). Aerobic capacity, measured by 6MWT, increased significantly (p = 0.001). Quality of life improved significantly during exercise (p < 0.001).Exercise training was suggested to improve the longitudinal intrinsic LV function and quality of life in HFPEF. Clinical Trial Registration: ACTRN12614001042639.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
R C Rimbas ◽  
A M Chitroceanu ◽  
M L Luchian ◽  
S I Visoiu ◽  
S Mihaila-Baldea ◽  
...  

Abstract Background Left ventricular (LV) deformation is dependent on mechanical load and does not reflect directly the myocardial energy consumption. Thus, measurement of global and regional myocardial work might be alternative and complementary methods for the assessment of myocardial function. However, there is no data regarding myocardial work changes during the heart failure continuum, from normal to diastolic dysfunction (DD), and to heart failure with preserved ejection fraction (HFpEF). Methods We assessed 80 subjects by 2D conventional and speckle tracking echocardiography (2DSTE): 25 patients with DD, 30 with HFpEF, and 25 normal, control subjects. We measured NTproBNP, LV ejection fraction (EF), and E/E' ratio. We used a new approach to calculate myocardial work, during mechanical systole and isovolumetric relaxation, by 2DSTE: global constructive work (GCW), as the “positive” work of the heart; global wasted work (GWW), as the “negative” work of the heart; global work efficiency (GWE), as the GCW/(GCW + GWW) in %; and global work index (GWI), as the GCW added to GWW. Similarly, a regional, segmental analysis was performed (18 segments model) (Figure 1). Results GCW increases in patients with DD, probably as a compensatory mechanism to preserve LV function against an increased after load, and decreases back to the normal values in HFpEF, while GWE significantly decreases from normal subjects to patients with DD, and then further in patients with HFpEF (table). Meanwhile, GWW increases from normal subjects to patients with DD, and then further in patients with HFpEF. As expected, GWI does not change significantly. By segmental analysis, first segment affected in terms of myocardial work is basal antero-septal segment, with low WE and higher WW (figure), probably due to the flat shape (based on the Laplace law), with a compensatory increased CW in the apical segments. NTproBNP level and E/E' ratio correlated only with GWW (r=0.4, p=0.013). Comparative global myocardial work Group LVEF (%) E/E' NTproBNP (pg/ml) GWI (mmHg%) GWE (%) GCW (mmHg%) GWW (mmHg%) Controls 58±6 7.3±2.4 – 2102±303 95.5±1.8 2295±279 87.9±39.6 DD 57±8 7.7±2.4 36±25 2296±431 94.8±2.3 2550±463 108±50 HFpEF 63±7 10.3±3.1 349±418 2074±485 93.5±2.5 2300±535 125±51 P (Anova) 0.004 <0.001 <0.001 0.12 0.008 0.05 0.019 Figure 1. Myocardial Work Conclusion Myocardial work efficiency decreases and wasted work increases in parallel with the severity of LV dysfunction. The first myocardial segment affected is basal antero-septal. Therefore, new parameters of myocardial work, derived from 2DSTE, might provide a better assessment of LV function in patients with DD or HFpEF. Acknowledgement/Funding This work was supported by a grant of Ministery of Research and Innovation, CNCS-UEFISCDI, project number PN-III-P1-1-TE-2016-0669, within PNCDI III


1998 ◽  
Vol 274 (5) ◽  
pp. H1684-H1689 ◽  
Author(s):  
Andreas Luchner ◽  
Tracy L. Stevens ◽  
Daniel D. Borgeson ◽  
Margaret Redfield ◽  
Chi-Ming Wei ◽  
...  

Although brain natriuretic peptide (BNP) of myocardial origin is important in cardiovascular and renal function and as a marker of cardiac dysfunction, the expression of BNP in atrial and ventricular myocardium remains controversial both under normal conditions and in heart failure. We therefore determined left atrial and left ventricular (LV) gene expression and tissue concentration as well as circulating BNP during the evolution of rapid ventricular pacing-induced congestive heart failure (CHF) in the dog. Early LV dysfunction after 10 days of pacing was characterized by impaired LV function but maintained arterial pressure, and overt CHF after 38 days of pacing was characterized by further impaired LV function and decreased systemic arterial pressure. Under normal conditions, cardiac BNP mRNA and cardiac tissue BNP were of atrial origin. In early LV dysfunction, BNP mRNA and tissue BNP were markedly increased in the left atrium in association with an increase in circulating BNP but remained below or at the limit of detection in the LV. In overt CHF, BNP mRNA was further increased in the left atrium and first increased in the LV, together with an increase in LV tissue BNP and a further increase in circulating BNP. In the progression of CHF, early LV dysfunction is characterized by a selective increase in atrial BNP expression in association with increased circulating BNP. Overt CHF is characterized by an additional recruitment of ventricular BNP expression and a further increase in circulating BNP. These studies provide important new insight into the local and temporal regulation of cardiac BNP gene expression during the progression of heart failure and underscore the predominant endocrine role of atrial myocardium under normal conditions and in early LV dysfunction.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Mingxing XIE ◽  
Yuman Li ◽  
He Li ◽  
Yuji Xie ◽  
Meng Li ◽  
...  

Objectives: We aimed to investigate the prevalence, risk factors and outcome of cardiac dysfunction, and explore the potential value of echocardiographic parameters in hospitalized patients with coronavirus disease 2019 (COVID-19). Background: Cardiac involvement is a prominent features in COVID-19. However, the prevalence and clinical significance of cardiac dysfunction in COVID-19 patients have not yet been well described. Methods: We studied 157 consecutive hospitalized COVID-19 patients, whose Left ventricular (LV) and right ventricular (RV) structure and function were evaluated by echocardiography. Results: RV dysfunction was found in 40 (25.5%) patients, and LV dysfunction in 28 (17.8%) patients consisting of 24 (15.3%) with heart failure with preserved ejection fraction and 4 (2.5%) with heart failure with reduced ejection fraction. Hypertension, acute respiratory distress syndrome (ARDS), high-sensitivity troponin I (hs-TNI) level and mechanical ventilation therapy was associated with cardiac dysfunction, which contributed to higher mortality (LV dysfunction: 28.6% vs 11.6%, P = 0.022; RV dysfunction: 37.5% vs 6.8%, P < 0.001, respectively). Moreover, LV and RV dysfunction were more frequent in patients with elevated hs-TNI than those without (37.5% vs 12.5 %, P = 0.001; 40.0 % vs 22.9%, P = 0.043, respectively). During hospitalization, 23 patients died. The mortality was 3.0% for patients without cardiac dysfunction and normal hs-TNI levels, 6.7% for those with cardiac dysfunction and normal hs-TNI levels, 13.3% for those without cardiac dysfunction but elevated hs-TNI levels, and 64.0% for those with cardiac dysfunction and elevated hs-TNI. In Cox analysis, RV dysfunction was independently predictor of higher mortality (hazard ratio=2.79; 95% CI: 1.10 to 7.06; P=0.031). HF, especially HFpEF, was not predictive of increased mortality. Conclusions: The prevalence of RV dysfunction was higher than that of HF. Moreover, HFpEF was more common than HFrEF. RV dysfunction is an independent predictor of higher mortality. Additionally, patients with cardiac dysfunction and elevated hs-TNI had the highest mortality, which may prompt physicians to pay attention not only to the hs-TNI level but also the cardiac dysfunction.


Sign in / Sign up

Export Citation Format

Share Document