Simulation of Size Distributions of TiO2 Nanoparticles in a Propane/Air Flame

Author(s):  
Hongyong Xie ◽  
Shi Chen

Size distributions of TiO2 nanoparticles synthesized in a propane/air flame CVD process have been simulated by CFD code Fluent. The flame is simulated by EDM and standard k-? model with non-equilibrium wall functions in the wall region. SIMPLE method is selected for pressure-velocity coupling and the convection term is discretized with first-order upwind scheme. Radiant energy absorption and irradiant are incorporated in the enthalpy balance by P1 model. Particle growth and size distributions are simulated by the implementation of integral collision kernel in particle dynamics and the condition of particle volume conservation into CFD code Fluent. Comparisons on number frequency size distributions between measured and predicted have been made and the results showed that the integral collision kernel gave reasonable predictions on both size and size distributions.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Wei Du ◽  
Lubna Dada ◽  
Jian Zhao ◽  
Xueshun Chen ◽  
Kaspar R. Daellenbach ◽  
...  

AbstractThe role of new particle formation (NPF) events and their contribution to haze formation through subsequent growth in polluted megacities is still controversial. To improve the understanding of the sources, meteorological conditions, and chemistry behind air pollution, we performed simultaneous measurements of aerosol composition and particle number size distributions at ground level and at 260 m in central Beijing, China, during a total of 4 months in 2015–2017. Our measurements show a pronounced decoupling of gas-to-particle conversion between the two heights, leading to different haze processes in terms of particle size distributions and chemical compositions. The development of haze was initiated by the growth of freshly formed particles at both heights, whereas the more severe haze at ground level was connected directly to local primary particles and gaseous precursors leading to higher particle growth rates. The particle growth creates a feedback loop, in which a further development of haze increases the atmospheric stability, which in turn strengthens the persisting apparent decoupling between the two heights and increases the severity of haze at ground level. Moreover, we complemented our field observations with model analyses, which suggest that the growth of NPF-originated particles accounted up to ∼60% of the accumulation mode particles in the Beijing–Tianjin–Hebei area during haze conditions. The results suggest that a reduction in anthropogenic gaseous precursors, suppressing particle growth, is a critical step for alleviating haze although the number concentration of freshly formed particles (3–40 nm) via NPF does not reduce after emission controls.


2008 ◽  
Vol 8 (19) ◽  
pp. 5843-5853 ◽  
Author(s):  
X.-F. Huang ◽  
J. Z. Yu

Abstract. Elemental carbon (EC), as one of the primary light-absorbing components in the atmosphere, has a significant impact on both regional and global climate. The environmental impacts of EC are strongly dependent on its particle size. Little is known about the size distribution characteristics of EC particles in China's ambient environments. We report size distributions of EC particles in the urban area of Shenzhen in Southern China. In our samples, EC was consistently found in two modes, a fine mode and a coarse mode. The majority of EC mass (~80%) in this coastal metropolitan city resided in particles smaller than 3.2 μm in diameter. The fine mode peaked at around either 0.42 μm or 0.75 μm. While the mode at 0.42 μm could be ascribed to fresh vehicular emissions in the region, the mode at 0.75 μm was likely a result of particle growth from smaller EC particles. We theoretically investigated the particle growth processes that caused the EC particles to grow from 0.42 μm to 0.75 µm in the atmosphere. Our calculations indicate that the EC peak at 0.75 μm was not produced through either coagulation or H2SO4 condensation; both processes are too slow to lead to significant EC growth. Hygroscopic growth was also determined to be insignificant. Instead, addition of sulfate through in-cloud processing was found to cause significant growth of the EC particles and to explain the EC peak at 0.75 μm. We also estimated the mixing state of EC from the EC size distributions. In the droplet size, at least 45–60% of the EC mass in the summer samples and 68% of the EC mass in the winter samples was internally mixed with sulfate as a result of in-cloud processing. This information on EC should be considered in models of the optical properties of aerosols in this region. Our results also suggest that the in-cloud processing of primary EC particles could increase the light absorbing capacities through mixing EC with sulfate.


2002 ◽  
Vol 2 (5) ◽  
pp. 1599-1633 ◽  
Author(s):  
M. Seifert ◽  
J. Ström ◽  
R. Krejci ◽  
A. Minikin ◽  
A. Petzold ◽  
...  

Abstract. In situ observations of aerosol particles contained in cirrus crystals are presented and compared to interstitial aerosol size distributions (non-activated particles in between the cirrus crystals). The observations were conducted in cirrus clouds in the Southern and Northern Hemisphere mid-latitudes during the INCA project. The first campaign in March and April 2000 was performed from Punta Arenas, Chile (54° S) in pristine air. The second campaign in September and October 2000 was performed from Prestwick, Scotland (53° N) in the vicinity of the North Atlantic flight corridor. Size distribution measurements of crystal residuals (particles remaining after evaporation of the crystals) show that small aerosol particles (Dp < 0.1µm) dominate the number density of residuals. The crystal residual size distributions were significantly different in the two campaigns. On average the residual size distributions were shifted towards larger sizes in the Southern Hemisphere. For a given integral residual number density, the calculated particle volume was on average three times larger in the Southern Hemisphere. This may be of significance to the vertical redistribution of aerosol mass by clouds in the tropopause region. In both campaigns the mean residual size increased with increasing crystal number density. The observations of ambient aerosol particles were consistent with the expected higher pollution level in the Northern Hemisphere. The fraction of residual particles only contributes to approximately a percent or less of the total number of particles, which is the sum of the residual and interstitial particles.


2019 ◽  
Vol 19 (5) ◽  
pp. 2787-2812 ◽  
Author(s):  
Betty Croft ◽  
Randall V. Martin ◽  
W. Richard Leaitch ◽  
Julia Burkart ◽  
Rachel Y.-W. Chang ◽  
...  

Abstract. Summertime Arctic aerosol size distributions are strongly controlled by natural regional emissions. Within this context, we use a chemical transport model with size-resolved aerosol microphysics (GEOS-Chem-TOMAS) to interpret measurements of aerosol size distributions from the Canadian Arctic Archipelago during the summer of 2016, as part of the “NETwork on Climate and Aerosols: Addressing key uncertainties in Remote Canadian Environments” (NETCARE) project. Our simulations suggest that condensation of secondary organic aerosol (SOA) from precursor vapors emitted in the Arctic and near Arctic marine (ice-free seawater) regions plays a key role in particle growth events that shape the aerosol size distributions observed at Alert (82.5∘ N, 62.3∘ W), Eureka (80.1∘ N, 86.4∘ W), and along a NETCARE ship track within the Archipelago. We refer to this SOA as Arctic marine SOA (AMSOA) to reflect the Arctic marine-based and likely biogenic sources for the precursors of the condensing organic vapors. AMSOA from a simulated flux (500 µgm-2day-1, north of 50∘ N) of precursor vapors (with an assumed yield of unity) reduces the summertime particle size distribution model–observation mean fractional error 2- to 4-fold, relative to a simulation without this AMSOA. Particle growth due to the condensable organic vapor flux contributes strongly (30 %–50 %) to the simulated summertime-mean number of particles with diameters larger than 20 nm in the study region. This growth couples with ternary particle nucleation (sulfuric acid, ammonia, and water vapor) and biogenic sulfate condensation to account for more than 90 % of this simulated particle number, which represents a strong biogenic influence. The simulated fit to summertime size-distribution observations is further improved at Eureka and for the ship track by scaling up the nucleation rate by a factor of 100 to account for other particle precursors such as gas-phase iodine and/or amines and/or fragmenting primary particles that could be missing from our simulations. Additionally, the fits to the observed size distributions and total aerosol number concentrations for particles larger than 4 nm improve with the assumption that the AMSOA contains semi-volatile species: the model–observation mean fractional error is reduced 2- to 3-fold for the Alert and ship track size distributions. AMSOA accounts for about half of the simulated particle surface area and volume distributions in the summertime Canadian Arctic Archipelago, with climate-relevant simulated summertime pan-Arctic-mean top-of-the-atmosphere aerosol direct (−0.04 W m−2) and cloud-albedo indirect (−0.4 W m−2) radiative effects, which due to uncertainties are viewed as an order of magnitude estimate. Future work should focus on further understanding summertime Arctic sources of AMSOA.


2006 ◽  
Vol 63 (1) ◽  
pp. 288-308 ◽  
Author(s):  
Andrew J. Heymsfield ◽  
Aaron Bansemer ◽  
Stephen L. Durden ◽  
Robert L. Herman ◽  
T. Paul Bui

Abstract Measurements are presented that were acquired from the National Aeronautics and Space Administration (NASA) DC-8 aircraft during an intensive 3-day study of Tropical Storm/Hurricane Humberto on 22, 23, and 24 September 2001. Particle size distributions, particle image information, vertical velocities, and single- and dual-wavelength Doppler radar observations were obtained during repeated sampling of the eyewall and outer eye regions. Eyewall sampling temperatures ranged from −22° to −57°C and peak updraft velocities from 4 to 15 m s−1. High concentrations of small ice particles, in the order 50 cm−3 and above, were observed within and around the updrafts. Aggregates, some larger than 7 mm, dominated the larger sizes. The slope of the fitted exponential size distributions λ was distinctly different close to the eye than outside of that region. Even at low temperatures, λ was characteristic of warm temperature growth (λ &lt; 30 cm−1) close to the eye and characteristic of low temperature growth outside of it as well (λ &gt; 100 cm−1). The two modes found for λ are shown to be consistent with observations from nonhurricane ice cloud layers formed through deep convection, but differ markedly from ice cloud layers generated in situ. It is shown that the median, mass-weighted, terminal velocities derived for the Humberto data and from the other datasets are primarily a function of λ. Microphysical measurements and dual wavelength radar observations are used together to infer and interpret particle growth processes. Rain in the lower portions of the eyewall extended up to the 6- or 7-km level. In the outer eye regions, aggregation progressed downward from between 8.5 and 11.9 km to the melting layer, with some graupel noted in rainbands. Homogeneous ice nucleation is implicated in the high concentrations of small ice particles observed in the vicinity of the updrafts.


2007 ◽  
Vol 119 ◽  
pp. 267-270 ◽  
Author(s):  
S.H. Woo ◽  
Min Ku Lee ◽  
Chang Kyu Rhee

In this study, the colloidal stability and sedimentation behavior of crystalline TiO2 particles (∼300nm) in various organic solvents have been investigated by means of a backscattered light flux profile (Turbiscan) and a zeta potential measurement. The backscattered light flux profiles revealed that the TiO2 nanoparticles were readily sedimented in water, methyl alcohol, and ethyl alcohol due to a flocculation-induced particle growth, while a particle coalescence and a sedimentation of the TiO2 nanoparticles were hardly observed in isopropyl alcohol. The measured ζ potentials verified the differences of the colloidal stabilities of the TiO2 particles in the organic solvents, showing a good correlation with the migration velocity.


Author(s):  
Marcelo Assato ◽  
Marcelo J. S. de Lemos

This work presents numerical results for heat transfer in turbulent flow past a backward-facing step. It is shown that nonlinear k-ε models perform better than their linear counterparts when simulations are compared with experimental values. Wall functions are used for simplicity of the simulations. The finite-volume technique is employed for discretizing the transport equation set on a non-orthogonal grid system. The SIMPLE method is used for correcting the pressure field. Results for the reattachment length using the non-linear model are closer to the experimental values when compared with similar calculations using the standard linear closure.


1986 ◽  
Vol 108 (4) ◽  
pp. 470-475 ◽  
Author(s):  
M. M. Gibson ◽  
B. A. Younis

Modifications to a Reynolds stress closure are proposed in which the weighting of the two components of the pressure-strain correlation is adjusted: the turbulence part is increased to conform with measured rates of return to isotropy and the contribution from the mean-strain part is reduced. Consequential changes are then needed in the other closure assumptions. Their effect is to make the model more generally applicable and to improve predictions of turbulent flows in complex strain fields. The revised model is tested here against the measured response of axisymmetric boundary layers to suddenly imposed rotation. The wall region of this flow is resolved by means of wall functions where it is assumed that the directions of the shear stress and the mean-strain rate are coincident.


Sign in / Sign up

Export Citation Format

Share Document