Rheological Properties of Tomato Concentrate

Author(s):  
Manish Dak ◽  
Radha Charan Verma ◽  
S N A Jaaffrey

Rheological properties of tomato concentrate were evaluated using a wide-gap rotational viscometer (Brookfield Engineering Laboratories: Model LVDV-II) at different temperatures of 20, 30, 40, 50, and 60oC, at concentration of 18, 12.18 and 8.04 % total solids, and at appropriate shear rate(1-100 RPM). The power law model was fitted to the experimental results. The values of flow behaviour index (n) were found less than unity (0.23 to 0.82) at all the temperature and the concentration indicating shear-thinning (pseudoplasticity) behaviour of the concentrate. The correlation between the observed consistency coefficient ranging from 0.09 to 65.87 Pa.sn and the inverse absolute temperature has been exhibited by Arrhenius model. Consistency coefficient increased exponentially with increase in the concentration. Statistical model was used for prediction of the consistency coefficient as a function of temperature and concentration which showed a good agreement (r2=0.99) between experimental and theoretical values. The magnitude of activation energy were found to be in the range of 8.6 to 14.08 kJ/mol.K.

Author(s):  
Manish Dak ◽  
Radha Charan Verma ◽  
Manoj Kumar Jain

Rheological characteristics of pineapple juice have been investigated and rheological parameters were evaluated using rotational viscometer at temperatures 20, 30 and 40*C at concentration 26.77, 18.99 and 14 % total solids. The experimental results followed the power law model for the best fit and the values of flow behaviour index (n) was less than unity (0.08 to 0.87) at all temperatures and concentrations indicating the shear thinning (pseudoplasticity) nature of juice. An obvious correlation between consistency coefficient in the range of 0.1 - 37.16 Pa.sn and inverse absolute temperature has been exhibited by Arrhenius model. The Power equation indicated that the consistency coefficient increased non-linearly with an increase in concentration. Mathematical models were developed for prediction of the consistency coefficient as a function of temperature and concentration. A good agreement was observed between experimental and theoretical values of the consistency coefficient predicted by models. The magnitude of activation energy was found to be in the range of 3.67 to 4.62 kJ/mol.K.


2020 ◽  
Vol 834 ◽  
pp. 82-89
Author(s):  
Evgenii Igorevich Kurkin ◽  
Vladislava Olegovna Chertykovtseva ◽  
Yaroslav Vyacheslavovich Zakhvatkin

The Brookfield_to_MATLAB and ViscosityApproximation codes for processing of experiments results for determination of viscosity on a rotational Brookfield DV3T viscometer is developed in the MATLAB. The codes allow to carry out automatic capture data, to calculate the shear rate for standard spindles RV-1 ... RV-7, to sort the measurement results on temperatures, to combine the experimental data and to determine the coefficients of the Andrade type power-law model. Paper describes experiment results on determination of viscosity of the epoxy binder reinforced by short carbon fibers. The coefficients of the viscosity model are determined by the linear regression coefficients. The obtained determination coefficient shows a good agreement of the model with the experimental data. The results are used for study various contents of a mass fraction of fibers: 0%, 5%, 10%, and 15%.


2016 ◽  
Vol 30 (2) ◽  
pp. 135-141
Author(s):  
Leidy M. Chacua ◽  
Germán Ayala ◽  
Hernán Rojas ◽  
Ana C. Agudelo

AbstractThe rheological behaviour of vinasses derived from sugar cane was studied as a function of time (0 and 600 s), soluble solids content (44 and 60 °Brix), temperature (10 and 50°C), and shear rate (0.33 and 1.0 s−1). The results indicated that vinasses were time-independent at 25°C, where shear stress values ranged between 0.01 and 0.08 Pa. Flow curves showed a shear-thinning rheological behaviour in vinasses with a flow behaviour index between 0.69 and 0.89, for temperature between 10 and 20°C. With increasing temperature, the flow behaviour index was modified, reaching values close to 1.0. The Arrhenius model described well the thermal activation of shear stress and the consistency coefficient as a function of temperature. Activation energy from the Arrhenius model ranged between 31 and 45 kJ mol−1. Finally, the consistency coefficient as a function of the soluble solids content and temperature was well fitted using an exponential model (R2= 0.951), showing that the soluble solids content and temperature have an opposite effect on consistency coefficient values.


2012 ◽  
Vol 30 (No. 3) ◽  
pp. 227-235 ◽  
Author(s):  
A. Pichler ◽  
A. Pozderović ◽  
J. Pavlović

The influence of the addition of sugars, sucrose, fructose, and trehalose, modified starches, and hydrocolloids on the rheological properties of raspberry cream fillings prepared with the addition of sucrose (27%), combination of sucrose (17%) and fructose (10%), and combination of sucrose (25.4%) and trehalose (1.6%) was observed. Modified starches, tapioca modified starch (1%) or waxy maize modified starch (1%), hydrocolloids, karaya (0.05%), or guar (0.05%) were added into the cream fillings too. The rheological properties (shear stress and shear rate at different temperatures) were measured by rotational viscometer. The consistency coefficient and flow index were calculated from the measured data. The results showed that waxy maize modified starch or guar gum additions into raspberry cream fillings had a greater impact on the cream filling consistency than tapioca modified starch or gum karaya. All raspberry cream fillings were Non-Newtonian stationary fluids at the measured temperatures except cream fillings S (with sucrose) and SF (with sucrose and fructose) with guar gum at a low temperature. These cream fillings were non-stationary rheopectic fluids at 0°C. The above mentioned sugars added influence the rheological properties of the cream fillings in different ways.  


2015 ◽  
Vol 11 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Fakhreddin Salehi ◽  
Mahdi Kashaninejad

Abstract A rotational viscometer was used to investigate the effect of different sugars (sucrose, glucose, fructose and lactose, 1–4% w/w) and salts (NaCl and CaCl2, 0.1–1% w/w), on rheological properties of Basil seed gum (BSG). The viscosity was dependent on type of sugar and salt addition. Interactions between BSG gum and sugars improved the viscosity of solutions, whereas the viscosity of the BSG solutions decreased in the presence of salts. Power law model well-described non-Newtonian shear thinning behavior of BSG. The consistency index was influenced by the sugars and salts content. Addition of sucrose, glucose, lactose and salts to BSG led to increases in flow behavior index (less shear thinning solutions), whereas fructose increased shear thinning of solutions. Flow behavior index values of the power law model vary as follows: 0.43–0.49, 0.53–0.64, 0.21–0.26, and 0.57–0.67 for sucrose, glucose, fructose and lactose, respectively. The consistency coefficient (k) of BSG was affected by sugars and salts. It decreased from 0.14 to 0.09 Pa.sn with increasing CaCl2 from 0 to 4% w/w (20°C, 0.2% w/w BSG). The consistency coefficient values vary as follows: 0.094–0.119, 0.075–0.098, 0.257–0.484, and 0.056–0.074 for sucrose, glucose, fructose and lactose, respectively.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 681
Author(s):  
Monika Sterczyńska ◽  
Marek Zdaniewicz ◽  
Katarzyna Wolny-Koładka

During the production of beer, and especially beer wort, the main wastes are spent grain and hot trub, i.e., the so-called “hot break.” Combined with yeast after fermentation, they represent the most valuable wastes. Hot trub is also one of the most valuable by-products. Studies on the chemical composition of these sediments and their rheological properties as waste products will contribute to their effective disposal and even further use as valuable pharmaceutical and cosmetic raw materials. So far, hot trub has been studied for morphology and particle distribution depending on the raw material composition and beer wort extract. However, there are no preliminary studies on the rheological properties of hot trub and hops. In particular, no attention has yet been paid to the dependence of these properties on the hop variety or different protein sources used. The aim of this study was to examine the effect of different hopping methods on hot trub viscosity and beer wort physicochemical parameters. Additionally, the hop solutions were measured at different temperatures. A microbiological analysis of hop sediments was also performed to determine the post-process survival of selected microorganisms in these wastes. For manufacturers of pumps used in the brewing industry, the most convenient material is that of the lowest viscosity. Low viscosity hot trub can be removed at lower velocities, which reduces costs and simplifies washing and transport. The sediments also had similar equilibrium viscosity values at high shear rates.


2010 ◽  
Vol 19 (4) ◽  
pp. 096369351001900 ◽  
Author(s):  
Emin Ergun

The aim of this study is to investigate, experimentally and numerically, the change of critical buckling load in composite plates with different ply numbers, orientation angles, stacking sequences and boundary conditions as a function of temperature. Buckling specimens have been removed from the composite plate with glass-fibre reinforcement at [0°]i and [45°]i (i= number of ply). First, the mechanical properties of the composite material were determined at different temperatures, and after that, buckling experiments were done for those temperatures. Then, numerical solutions were obtained by modelling the specimens used in the experiment in the Ansys10 finite elements package software. The experimental and numerical results are in very good agreement with each other. It was found that the values of the buckling load at [0°] on the composite plates are higher than those of other angles. Besides, symmetrical and anti-symmetrical conditions were examined to see the effect of the stacking sequence on buckling and only numerical solutions were obtained. It is seen that the buckling load reaches the highest value when it is symmetrical in the cross-ply stacking sequence and it is anti-symmetrical in the angle-ply stacking sequence.


2009 ◽  
Vol 615-617 ◽  
pp. 311-314 ◽  
Author(s):  
W.S. Loh ◽  
J.P.R. David ◽  
B.K. Ng ◽  
Stanislav I. Soloviev ◽  
Peter M. Sandvik ◽  
...  

Hole initiated multiplication characteristics of 4H-SiC Separate Absorption and Multiplication Avalanche Photodiodes (SAM-APDs) with a n- multiplication layer of 2.7 µm were obtained using 325nm excitation at temperatures ranging from 300 to 450K. The breakdown voltages increased by 200mV/K over the investigated temperature range, which indicates a positive temperature coefficient. Local ionization coefficients, including the extracted temperature dependencies, were derived in the form of the Chynoweth expression and were used to predict the hole multiplication characteristics at different temperatures. Good agreement was obtained between the measured and the modeled multiplication using these ionization coefficients. The impact ionization coefficients decreased with increasing temperature, corresponding to an increase in breakdown voltage. This result agrees well with the multiplication characteristics and can be attributed to phonon scattering enhanced carrier cooling which has suppressed the ionization process at high temperatures. Hence, a much higher electric field is required to achieve the same ionization rates.


2009 ◽  
Vol 52 (6) ◽  
pp. 1541-1553 ◽  
Author(s):  
Dayane Rosalyn Izidoro ◽  
Agnes de Paula Scheer ◽  
Maria-Rita Sierakowsk

In this work, the rheological behaviour of emulsions (mayonnaises) stabilized by green banana pulp using the response surface methodology was studied. In addition, the emulsions stability was investigated. Five formulations were developed, according to design for constrained surfaces and mixtures, with the proportion, respectively: water/soy oil/green banana pulp: F1 (0.10/0.20/0.70), F2 (0.20/0.20/0.60), F3 (0.10/0.25/0.65), F4 (0.20/0.25/0.55) and F5 (0.15/0.225/0.625) .Emulsions rheological properties were performed with a rotational Haake Rheostress 600 rheometer and a cone and plate geometry sensor (60-mm diameter, 2º cone angle), using a gap distance of 1mm. The emulsions showed pseudoplastic behaviour and were adequately described by the Power Law model. The rheological responses were influenced by the difference in green banana pulp proportions and also by the temperatures (10 and 25ºC). The formulations with high pulp content (F1 and F3) presented higher shear stress and apparent viscosity. Response surface methodology, described by the quadratic model,showed that the consistency coefficient (K) increased with the interaction between green banana pulp and soy oil concentration and the water fraction contributed to the flow behaviour index increase for all emulsions samples. Analysis of variance showed that the second-order model had not significant lack-of-fit and a significant F-value, indicating that quadratic model fitted well into the experimental data. The emulsions that presented better stability were the formulations F4 (0.20/0.25/0.55) and F5 (0.15/0.225/0.625).


The theory of the estimation of the electric moment of molecules dissolved in a non-polar solvent is now well known. The fundamental equation is P 2∞ = 4 π /3 N (α 0 + μ 2 /3 k T) (1) in which the symbols have the following significance: P 2∞ the total polarizability of the solute per grain molecule at infinite dilution, N Avogadro’s number, α 0 the moment induced in a single molecule by unit electric field, k the Boltzmann gas constant, T the absolute temperature, and μ the permanent electric moment of the molecule. This equation is of the form P 2∞ = A + B/T, (2) where A = 4 π /3 Nα 0 and B = 4 π /9 . N μ 2 / k , from which it follows that if A and B are constant, i. e ., independent of temperature, then each may be evaluated from a series of measurements of P 2∞ at different temperatures or alternatively B (and hence μ ) may be obtained from one value of P 2∞ at one temperature, provided that A can be obtained by some independent method.


Sign in / Sign up

Export Citation Format

Share Document