Processing a Brookfield Rotational Viscometer Measurement Results in the MATLAB

2020 ◽  
Vol 834 ◽  
pp. 82-89
Author(s):  
Evgenii Igorevich Kurkin ◽  
Vladislava Olegovna Chertykovtseva ◽  
Yaroslav Vyacheslavovich Zakhvatkin

The Brookfield_to_MATLAB and ViscosityApproximation codes for processing of experiments results for determination of viscosity on a rotational Brookfield DV3T viscometer is developed in the MATLAB. The codes allow to carry out automatic capture data, to calculate the shear rate for standard spindles RV-1 ... RV-7, to sort the measurement results on temperatures, to combine the experimental data and to determine the coefficients of the Andrade type power-law model. Paper describes experiment results on determination of viscosity of the epoxy binder reinforced by short carbon fibers. The coefficients of the viscosity model are determined by the linear regression coefficients. The obtained determination coefficient shows a good agreement of the model with the experimental data. The results are used for study various contents of a mass fraction of fibers: 0%, 5%, 10%, and 15%.

Author(s):  
Emre Kahramanoglu ◽  
Silvia Pennino ◽  
Huseyin Yilmaz

The hydrodynamic characteristics of the planing hulls in particular at the planing regime are completely different from the conventional hull forms and the determination of these characteristics is more complicated. In the present study, calm water hydrodynamic characteristics of planing hulls are investigated using a hybrid method. The hybrid method combines the dynamic trim and sinkage from the Zarnick approach with the Savitsky method in order to calculate the total resistance of the planing hull. Since the obtained dynamic trim and sinkage values by using the original Zarnick approach are not in good agreement with experimental data, an improvement is applied to the hybrid method using a reduction function proposed by Garme. The numerical results obtained by the hybrid and improved hybrid method are compared with each other and available experimental data. The results indicate that the improved hybrid method gives better results compared to the hybrid method, especially for the dynamic trim and resistance. Although the results have some discrepancies with experimental data in terms of resistance, trim and sinkage, the improved hybrid method becomes appealing particularly for the preliminary design stage of the planing hulls.


Author(s):  
Manish Dak ◽  
Radha Charan Verma ◽  
S N A Jaaffrey

Rheological properties of tomato concentrate were evaluated using a wide-gap rotational viscometer (Brookfield Engineering Laboratories: Model LVDV-II) at different temperatures of 20, 30, 40, 50, and 60oC, at concentration of 18, 12.18 and 8.04 % total solids, and at appropriate shear rate(1-100 RPM). The power law model was fitted to the experimental results. The values of flow behaviour index (n) were found less than unity (0.23 to 0.82) at all the temperature and the concentration indicating shear-thinning (pseudoplasticity) behaviour of the concentrate. The correlation between the observed consistency coefficient ranging from 0.09 to 65.87 Pa.sn and the inverse absolute temperature has been exhibited by Arrhenius model. Consistency coefficient increased exponentially with increase in the concentration. Statistical model was used for prediction of the consistency coefficient as a function of temperature and concentration which showed a good agreement (r2=0.99) between experimental and theoretical values. The magnitude of activation energy were found to be in the range of 8.6 to 14.08 kJ/mol.K.


A secular determinant for the determination of vibration frequencies of lithium has been set up by Launay’s method which takes the electron gas into account. Theoretical elastic constants have been used in the calculation of the force constants. Frequencies have been calculated for 47 points of the first Brillouin zone which gives the value of 3 x 1000 = 3000 frequencies by symmetry. Specific heats have been calculated by numerical computation in the range 300 to 6°K and show good agreement with the experimental data. The agreement below liquid-air temperatures is surprising in view of the known phase transformation of lithium.


10.14311/892 ◽  
2006 ◽  
Vol 46 (6) ◽  
Author(s):  
F. Rieger

Knowledge about rheological behavior is necessary in engineering calculations for equipment used for processing concentrated suspensions and polymers. Power-law and Bingham models are often used for evaluating the experimental data. This paper proposes the reference radius to which experimental results obtained by measurements on a rotational viscometer with coaxial cylinders should be related. 


Author(s):  
Chao Liu ◽  
Jiren Zhou ◽  
Li Cheng

The experiment study was made to optimize the design of a pumping forebay. The Combined-sills were made in the forebay to eliminate the circulation and vortices of the diffusing flow successfully. The Numerical simulation of three-dimensional turbulent flow is applied on the complicate fore-and-aft flow of sills. The computational results are compared with the measurement results of physical model. The calculated results are in good agreement with the experimental data. The flow pattern is obviously improved. The study results have been applied in the project which gives a uniform approach flow to the pumping sump.


2017 ◽  
Vol 231 (11-12) ◽  
Author(s):  
Humbul Suleman ◽  
Abdulhalim Shah Maulud ◽  
Zakaria Man

AbstractA computationally simple thermodynamic framework has been presented to correlate the vapour-liquid equilibria of carbon dioxide absorption in five representative types of alkanolamine mixtures. The proposed model is an extension of modified Kent Eisenberg model for the carbon dioxide loaded aqueous alkanolamine mixtures. The model parameters are regressed on a large experimental data pool of carbon dioxide solubility in aqueous alkanolamine mixtures. The model is applicable to a wide range of temperature (298–393 K), pressure (0.1–6000 kPa) and alkanolamine concentration (0.3–5 M). The correlated results are compared to the experimental values and found to be in good agreement with the average deviations ranging between 6% and 20%. The model results are comparable to other thermodynamic models.


Author(s):  
Marzia Bordone ◽  
Martin Jung ◽  
Danny van Dyk

Abstract We carry out an analysis of the full set of ten $$\bar{B}\rightarrow D^{(*)}$$B¯→D(∗) form factors within the framework of the Heavy-Quark Expansion (HQE) to order $$\mathcal {O}\left( \alpha _s,\,1/m_b,\,1/m_c^2\right) $$Oαs,1/mb,1/mc2, both with and without the use of experimental data. This becomes possible due to a recent calculation of these form factors at and beyond the maximal physical recoil using QCD light-cone sum rules, in combination with constraints from lattice QCD, QCD three-point sum rules and unitarity. We find good agreement amongst the various theoretical results, as well as between the theoretical results and the kinematical distributions in $$\bar{B}\rightarrow D^{(*)}\lbrace e^-,\mu ^-\rbrace \bar{\nu }$$B¯→D(∗){e-,μ-}ν¯ measurements. The coefficients entering at the $$1/m_c^2$$1/mc2 level are found to be of $$\mathcal {O}(1)$$O(1), indicating convergence of the HQE. The phenomenological implications of our study include an updated exclusive determination of $$|V_{cb}|$$|Vcb| in the HQE, which is compatible with both the exclusive determination using the BGL parametrization and with the inclusive determination. We also revisit predictions for the lepton-flavour universality ratios $$R_{D^{(*)}}$$RD(∗), the $$\tau $$τ polarization observables $$P_\tau ^{D^{(*)}}$$PτD(∗), and the longitudinal polarization fraction $$F_L$$FL. Posterior samples for the HQE parameters are provided as ancillary files, allowing for their use in subsequent studies.


e-Polymers ◽  
2015 ◽  
Vol 15 (6) ◽  
pp. 447-450 ◽  
Author(s):  
Fengguo Liu ◽  
Ying Wang ◽  
Xiangxin Xue ◽  
He Yang

AbstractEpoxy acrylate (EA) and tripropylene glycol diacrylate (TPGDA) are two main components of ultraviolet-curable coatings. In this study, the viscosity of EA-TPGDA binary mixtures at various mass ratios was measured by a rotational viscometer at temperatures between 298.15 and 313.15 K. The temperature dependence of the viscosity of the mixtures is discussed. An empirical correlation between the viscosity and the temperature was obtained based on the Andrade equation. The results indicated that the calculated viscosity values show a good agreement with experimental data. This will contribute to the evaluation of the rheological properties and provide a theoretical basis for the industrial application of coatings.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Paulina Gilewicz ◽  
Damian Obidowski ◽  
Krzysztof Sobczak ◽  
Iwona Frydrych ◽  
Agnieszka Cichocka

Abstract The protective clothing packages, which protect the human body against hot factors in a foundry are in continuous development to increase their resistance and comfort of use. The problem of heat transfer through textiles is the active field of research and reliable numerical modeling of this process can be helpful to design high-quality protective products. Therefore, the numerical model of heat transfer through the package based on the aluminized basalt fabric was developed. The macroscopic geometry of weft and warp threads was reproduced in agreement with samples of plain weave basalt fabric. Mapping the stochastically distributed individual monofilaments in basalt threads, as well as modeling the heat transfer between them, was impossible at the microscopic level. Therefore, the weft and warp threads were modeled as a porous material with a homogeneous distribution of basalt and air in their structure. Data from measurements of the bare and aluminized basalt fabrics by the Alambeta device were used to determine the model parameters. The model was used to simulate the heat transfer through the protective package composed of the aluminized basalt fabric, wool clothing, and cotton underwear. A good agreement of model results was found for measurement results in such a package. The presented procedure allowed for the determination of the main thermal properties of tested basalt fabrics.


Author(s):  
Mario Hala ◽  
Lubomír Petrula ◽  
Zakaraya Alhasan

Hydraulic conductivity determination plays an essential role in the investigation of groundwater flow regime which can then influence many field problems such as pumping capabilities in the area, transport of contaminant or heat and soil internal erosion. Numerous equations based on dimensional analysis or experimental measurements have been published since the end of the 19th century for the determination of hydraulic conductivity. However, not all of these formulae are applicable for every material and all of them bring some uncertainty in the value of hydraulic conductivity. This paper contains a description of experimental research carried out concerning the determination of hydraulic conductivity for four types of sand with different grain size distribution curves and variable porosity. Obtained values of hydraulic conductivity ranged from 1 × 10-4 to 4 × 10-3 according to the sample porosity. The series of experiments consisted of 160 separate tests conducted in order to obtain relevant statistical sets. In this paper, the experimental data are discussed and compared with hydraulic conductivities obtained from 6 empirical formulae recommended in a previous study. The comparison showed that some empirical formulae provide a good agreement with the experimental data (the most precise were formulae published by Terzaghi and by Sauerbrey). However, some formulae showed high deviation from measured data (formula published by Zamarin).


Sign in / Sign up

Export Citation Format

Share Document