scholarly journals DURABILITY EVALUATION FOR CFA STABILIZED BASE WITH CEMENT SLURRY BY ACCELERATED LOAD TESTE

2008 ◽  
Vol 13 ◽  
pp. 107-114
Author(s):  
Hideharu EBISAWA ◽  
Hajime GODENKI ◽  
Kazunobu ONIKURA ◽  
Ken TOMISAWA ◽  
Toshihiro KANAI
Keyword(s):  
2017 ◽  
pp. 62-67
Author(s):  
V. G. Kuznetsov ◽  
O. A. Makarov

At cementing of casing of oil and gas wells during the process of injecting of cement slurry in the casing column the slurry can move with a higher speed than it’s linear injection speed. A break of continuity of fluid flow occurs, what can lead to poor quality isolation of producing formations and shorten the effective life of the well. We need to find some technical solution to stabilize the linear velocity of the cement slurry in the column. This task can be resolved with an automated control system.


2015 ◽  
Vol 8 (1) ◽  
pp. 149-154 ◽  
Author(s):  
Jun Gu ◽  
Ju Huang ◽  
Su Zhang ◽  
Xinzhong Hu ◽  
Hangxiang Gao ◽  
...  

The purpose of this study is to improve the cementing quality of shale gas well by mud cake solidification, as well as to provide the better annular isolation for its hydraulic fracturing development. Based on the self-established experimental method and API RP 10, the effects of mud cake solidifiers on the shear strength at cement-interlayer interface (SSCFI) were evaluated. After curing for 3, 7, 15 and 30 days, SSCFI was remarkably improved by 629.03%, 222.37%, 241.43% and 273.33%, respectively, compared with the original technology. Moreover, the compatibility among the mud cake solidifier, cement slurry, drilling fluid and prepad fluid meets the safety requirements for cementing operation. An application example in a shale gas well (Yuanye HF-1) was also presented. The high quality ratio of cementing quality is 93.49% of the whole well section, while the unqualified ratio of adjacent well (Yuanba 9) is 84.46%. Moreover, the cementing quality of six gas-bearing reservoirs is high. This paper also discussed the mechanism of mud cake solidification. The reactions among H3AlO42- and H3SiO4- from alkali-dissolved reaction, Na+ and H3SiO4- in the mud cake solidifiers, and Ca2+ and OH- from cement slurry form the natrolite and calcium silicate hydrate (C-S-H) with different silicate-calcium ratio. Based on these, SSCFI and cementing quality were improved.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1190
Author(s):  
Tomasz Sliwa ◽  
Aneta Sapińska-Śliwa ◽  
Tomasz Wysogląd ◽  
Tomasz Kowalski ◽  
Izabela Konopka

The development of civilization, and subsequent increase in the number of new buildings, poses engineering problems which are progressively more difficult to solve, especially in the field of geotechnics and geoengineering. When designing new facilities, particular attention should be paid to environmental aspects, and thus any new facility should be a passive building, fully self-sufficient in energy. The use of load-bearing energy piles could be a solution. This article presents research on the cement slurry formulas with the addition of graphite and graphene, that can be used as a material for load-bearing piles. The proposed solution is to introduce U-tubes into the pile to exchange heat with the rock mass (the so-called energy piles). A comparison of four slurry formulas is presented: the first one consisting mainly of cement (CEM I), graphite, and water, and the remaining three with different percentages of graphene relative to the weight of dry cement. The results could contribute to the industrial application of those formulas in the future.


2021 ◽  
Vol 295 ◽  
pp. 123606
Author(s):  
Xin Chen ◽  
Chengwen Wang ◽  
Yucheng Xue ◽  
Zehua Chen ◽  
Jianzhou Jin ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 241
Author(s):  
Xiaozhen Li ◽  
Hui Wang ◽  
Jianmin Wang ◽  
Junzhe Liu

In this work, the microstructure characteristics of corrosion products of reinforcement under a corrosive environment with chloride, carbonation and the combination of chloride-carbonization were studied by x-ray photoelectron spectroscopy (XPS) and scanning electron microscopy/energy spectroscopy (SEM-EDX). The results indicate that the outside of the passivation film reacts with the cement slurry to produce Fe–SiO4 in all three corrosive environments. The inner side is not completely corroded. The morphology of the corrosion is different in the three environments. In a chloride environment, corrosion products have obvious cracks, and the local layered structure is dense. In a carbonation environment, the surface of the steel corrosion shows a uniform granular structure and loose texture. With the combination of chloride and combination, the surface of the structural layer of steel corrosion was uneven and accompanied by protrusions, cracking and spalling occurred. The composition of the corrosion substances in the three corrosion environments are mainly composed of FeO, Fe3O4, Fe2O3 and Fe–SiO4. The content of iron oxide increases from a chloride salt, carbonization to the composite environment, indicating that the corrosion degree intensifies successively.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 313
Author(s):  
Shinya Inazumi ◽  
Sudip Shakya ◽  
Takahiro Komaki ◽  
Yasuharu Nakanishi

This study focused on the middle-pressure jet grouting method, which has a complicated development mechanism for the columnar soil-improved body, with the aim of establishing a computer-aided engineering (CAE) system that can simulate the performance on a computer. Furthermore, in order to confirm the effect of middle-pressure jet grouting with mechanical agitation and mixing, a comparative analysis was performed with different jet pressures, the development situation was visualized, and the performance of this method was evaluated. The results of MPS-CAE as one of the CAE systems showed that the cement slurry jet ratio in the planned improvement range, including the periphery of the mixing blade, by the middle-pressure jet grouting together with the mechanical agitation and mixing was increased and a high quality columnar soil-improved body was obtained. It is expected that the introduction of CAE will contribute to the visualization of the ground, and that CAE will be an effective tool for the visual management of construction for ground improvement and the maintenance of improved grounds during the life cycle of the ground-improvement method.


2019 ◽  
Vol 257 ◽  
pp. 126736
Author(s):  
Yanhai Qi ◽  
Shucai Li ◽  
Zhaofeng Li ◽  
Haiyan Li ◽  
Jian Zhang

2017 ◽  
Author(s):  
Dharmesh Talong ◽  
Animesh Kumar ◽  
Arindam Sarma ◽  
Kuhu Priyamvada ◽  
Vaibhav Tyagi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document